Impact of temperature on heparin and protein interactions

Authors
Zhao, J.
Kong, Y.
Zhang, F.
Linhardt, Robert J.
ORCID
https://orcid.org/0000-0003-2219-5833
Loading...
Thumbnail Image
Other Contributors
Issue Date
2018
Keywords
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Degree
Terms of Use
In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/
Full Citation
Impact of temperature on heparin and protein interactions, J. Zhao, Y. Kong, F. Zhang, R. J. Linhardt, Biochemistry and Physiology, 7, 2, 2018.
Abstract
Heparin has many important biological activities, associated with a diverse set of interactions with biologically functional proteins. The binding mechanisms and biological significance of heparin-protein interactions have attracted wide attention. However, the temperature sensitivity of heparin-protein interaction is relatively unstudied. The impact of temperature on the binding of heparin to three representative heparin-binding proteins, antithrombin III (AT III), fibroblast growth factor-1 (FGF1) and fibroblast growth factor-2 (FGF2) are evaluated. The affinity and kinetics of these interactions were measured at 10°C, 25°C and 30°C. The association rate, dissociation rate, binding affinity and binding mass were compared at different temperatures. In the two state binding process between AT III and heparin, temperature played a negligible role on ATIII binding to heparin (1st state reaction), but demonstrated a role in the conformational change process (2nd state reaction). In the case of FGF1 and FGF2, the kinetics and affinity, while distinctly different at the temperatures studies, were still within the same order of magnitude. Based these results, we conclude that it many cases it is possible to perform surface plasmon resonance measurements of heparin-protein interaction at different temperatures, especially at reduced (ambient or lower) temperatures, and obtain comparable binding data.
Description
Biochemistry and Physiology, 7, 2
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Department
The Linhardt Research Labs.
The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)
Publisher
Omics
Relationships
The Linhardt Research Labs Online Collection
Rensselaer Polytechnic Institute, Troy, NY
https://harc.rpi.edu/
Access
A full text version is available in DSpace@RPI