• Login
    View Item 
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Biodegradable and Bioactive Core-Shell Fibers for Tissue Engineering

    Author
    Hou, Lijuan; Zhang, Xing; Mikael, Paiyz E.; Lin, Lei; Dong, Wenjun; Zheng, Yingying; Simmons, Trevor John; Zhang, Fuming; Linhardt, Robert J.
    ORCID
    https://orcid.org/0000-0003-2219-5833
    Thumbnail
    View/Open
    BIODEGRADABLE AND BIOACTIVE PCL-PGS CORE-SHELL FIBERS FOR TISSUE.pdf (4.895Mb)
    Other Contributors
    Date Issued
    2017-10-31
    Subject
    Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineering
    Degree
    Terms of Use
    In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/;
    Full Citation
    Biodegradable and Bioactive Core-Shell Fibers for Tissue Engineering, L. Hou, X. Zhang, P.E. Mikael, L. Lin, W. Dong, Y. Zheng, T. J. Simmons, F. Zhang, R. J. Linhardt, ACS Omega, 2, 6321−6328, 2017.
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/5381; https://doi.org/10.1021/acsomega.7b00460
    Abstract
    Poly(glycerol sebacate) (PGS) has increasingly become a desirable biomaterial due to its elastic mechanical properties, biodegradability, and biocompatibility. Here, we report microfibrous core–shell mats of polycaprolactone (PCL)–PGS prepared using wet–wet coaxial electrospinning. The anticoagulant heparin was immobilized onto the surface of these electrospun fiber mats, and they were evaluated for their chemical, mechanical, and biological properties. The core–shell structure of PCL–PGS provided tunable degradation and mechanical properties. The slowly degrading PCL provided structural integrity, and the fast degrading PGS component increased fiber elasticity. Young’s modulus of PCL–PGS ranged from 5.6 to 15.7 MPa. The ultimate tensile stress ranged from 2.0 to 2.9 MPa, and these fibers showed elongation from 290 to 900%. The addition of PGS and grafting of heparin improved the attachment and proliferation of human umbilical vein endothelial cells. Core–shell PCL–PGS fibers demonstrate improved performance as three-dimensional fibrous mats for potential tissue-engineering applications.;
    Description
    ACS Omega, 2, 6321−6328; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
    Department
    The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);
    Publisher
    American Chemical Society (ACS)
    Relationships
    The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; ACS Omega; https://harc.rpi.edu/;
    Access
    ACS AuthorChoice License; Open Access; A full text version is available in DSpace@RPI;
    Collections
    • Linhardt Research Labs Papers

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV