• Login
    View Item 
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Programming designer DNA nanostructures for inhibition of virus infection

    Author
    Ren, S.; Fraser, K.; Kuo, L.; Chauhan, N.; Adrian, A.; Zhang, F.; Linhardt, Robert J.; Kwon, P.S.; Wang, X.
    ORCID
    https://orcid.org/0000-0003-2219-5833
    Thumbnail
    Other Contributors
    Date Issued
    2022
    Subject
    Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineering
    Degree
    Terms of Use
    In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/;
    Full Citation
    Programming designer DNA nanostructures for inhibition of virus infection, S. Ren, K. Fraser, L. Kuo, N. Chauhan, A. Adrian, F. Zhang, R. J. Linhardt, P. S. Kwon, X. Wang, Nature Protocols, 17, 282-326, 2022.
    Metadata
    Show full item record
    URI
    https://doi.org/10.1038/s41596-021-00641-y; https://hdl.handle.net/20.500.13015/5433
    Abstract
    The challenges underlying current coronavirus disease 2019 treatment and rapid diagnostic development are already well known from previous encounters with newly emerging pathogens (e.g., the 2009 H1N1 pandemic 1,2). Inhibition and treatment of virus infections typically relies on neutralizing antibodies (NAbs) that target virus surface-specific epitopes mainly in a one-to-one fashion 3. Production of NAbs can be triggered by vaccination or active virus infection in the host. However, safe and effective vaccines normally take years to develop for an emerging virus. Therapeutic antibodies can be administered in response to viral infections. However, producing antibodies for treatment is very costly and time consuming. Importantly, NAbs may induce unwanted antibody-dependent enhancement of infection 4,5 (for example, with dengue virus (DENV) vaccine), where antibodies induce increased viral infectivity in vivo. Viruses present unique spatial patterns of antigens on their surfaces 6. Such patterns facilitate multivalent binding of the virus to host cells for enhanced pathogenic infectivity. Based on this naturally occurring multivalent virus-cell binding mechanism, creating polyvalent virus entry blockers is a promising and practical approach to producing potent inhibitors of virus infections.;
    Description
    Nature Protocols, 17, 282-326; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
    Department
    The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);
    Relationships
    The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; https://harc.rpi.edu/;
    Access
    Collections
    • Linhardt Research Labs Papers

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV