• Login
    View Item 
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enzymatic polymerization of poly(glycerol-1,8-octanediol-sebacate): versatile PGS analogs that form mono-component biodegradable fiber scaffolds

    Author
    Lang, K.; Bhattacharya, S.; Ning, Z.; Sánchez-Leija, R.J.; Bramson, M.T.K.; Centore, R.; Corr, D.T.; Linhardt, Robert J.; Gross, R.A.
    ORCID
    https://orcid.org/0000-0003-2219-5833
    Thumbnail
    Other Contributors
    Date Issued
    2020
    Subject
    Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineering
    Degree
    Terms of Use
    In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/;
    Full Citation
    Enzymatic polymerization of poly(glycerol-1,8-octanediol-sebacate): versatile PGS analogs that form mono-component biodegradable fiber scaffolds, K. Lang, S. Bhattacharya, Z. Ning, R. J. Sánchez-Leija, M.T. K. Bramson, R. Centore, D. T. Corr, R. J. Linhardt, R.A. Gross, Biomacromolecules, 21, 3197-3206, 2020.
    Metadata
    Show full item record
    URI
    https://doi.org/10.1021/acs.biomac.0c00641; https://hdl.handle.net/20.500.13015/5487
    Abstract
    A family of poly(glycerol sebacate) (PGS) analogues were synthesized by Candida antarctica lipase B (CALB) catalysis to tailor biomaterial properties. Different fractions of glycerol (G) units in PGS were replaced by 1,8-octanediol (O) units. Poly(glycerol-1,8-octanediol-sebacate), PGOS, synthesized by CALB catalysis with a 1:3 molar ratio of G to O units has Mn and Mw values of 9500 and 92,000, respectively. PGS undergoes fiber fusion during electrospinning, and cross-linked PGS rapidly resorbs when implanted. By decreasing the molar ratio of glycerol-to-octanediol from 1:1 to 1:4, the peak melting temperature (Tm) increased from 27 to 47 °C. PGOS with 1:3 G to O units was electrospun into nanofibers without the need for a second component. The copolymer is semicrystalline and, when cross-linked, undergoes slow in vitro mass loss (3.5 ± 1.0% in 31 days) at pH 7.4 and 37 °C. Furthermore, PGOS cross-linked films have an elastic modulus of 106.1 ± 18.6 MPa, which is more than 100 times that of cross-linked PGS. New PGOS polymers showed tunable molecular weights, better thermal properties, and excellent electrospinnability. This work expanded PGS analogues’ function, making these suitable biodegradable polymers for various biomedical applications.;
    Description
    Biomacromolecules, 21, 3197-3206; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
    Department
    The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);
    Relationships
    The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; https://harc.rpi.edu/;
    Access
    https://login.libproxy.rpi.edu/login?url=https://doi.org/10.1021/acs.biomac.0c00641;
    Collections
    • Linhardt Research Labs Papers

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV