• Login
    View Item 
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Production and characterization of recombinant collagen binding resilin nanocomposite for regenerative medicine applications

    Author
    Mikael, Paiyz E.; Udangawa, Ranodhi; Sorci, Mirco; Cress, Brady; Shtein, Zvi; Belfort, Georges; Shoseyov, Oded; Dordick, Jonathan S.; Linhardt, Robert J.
    ORCID
    https://orcid.org/0000-0003-2219-5833
    Thumbnail
    Other Contributors
    Date Issued
    2019-12-01
    Subject
    Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineering
    Degree
    Terms of Use
    In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/;
    Full Citation
    Production and characterization of recombinant collagen binding resilin nanocomposite for regenerative medicine applications, P. E. Mikael, R. Udangawa, M. Sorci, B. Cress, Z. Shtein, G. Belfort, O. Shoseyov, J. S. Dordick, R. J. Linhardt, Regenerative Engineering and Translational Medicine, 5, 362–372, 2019.
    Metadata
    Show full item record
    URI
    https://doi.org/10.1007/s40883-019-00092-8; https://hdl.handle.net/20.500.13015/5528
    Abstract
    Development of mechanically stable and multifunctional biomaterials for sensing, repair, and regeneration applications is of great importance. Herein, we investigate the potential of recombinant resilin-like (Res) nanocomposite elastomer as a template biomaterial for regenerative devices such as adhesive bandages or films, electrospun fibers, screws, sutures, and drug delivery vehicles. Exon I (Rec1) from the native resilin gene of Drosophila (CG15920) was fused with collagen-binding domain (ColBD) from Clostridium histolyticum and expressed in Komagataella pastoris (formerly Pichia pastoris). The 100% binding of Resilin-ColBD (Res-ColBD) to collagen I was shown at a 1:1 ratio by mass. Atomic force microscopy results in force mode show a bimodal profile for the ColBD-binding interactions. Moreover, based on the force-volume map, Res-ColBD adhesion to collagen was statistically significantly higher than resilin without ColBD.;
    Description
    Regenerative Engineering and Translational Medicine, 5, 362–372; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
    Department
    The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);
    Relationships
    The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; Regenerative Engineering and Translational Medicine; https://harc.rpi.edu/;
    Access
    https://login.libproxy.rpi.edu/login?url=https://doi.org/10.1007/s40883-019-00092-8;
    Collections
    • Linhardt Research Labs Papers

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV