Show simple item record

dc.contributor.authorOuyang, Yilan
dc.contributor.authorZhu, Meng
dc.contributor.authorWang, Xin
dc.contributor.authorYi, Lin
dc.contributor.authorFareed, Jawed
dc.contributor.authorLinhardt, Robert J.
dc.contributor.authorZhang, Zhenqing
dc.identifier.citationSystematic analysis of enoxaparins from different sources with online one- and two-dimensional chromatography, Y. Ouyang, M. Zhu, X. Wang, L. Yi, J. Fareed, R.J. Linhardt, Z. Zhang, Analyst,144, 3746–3755, 2019.
dc.descriptionAnalyst, 144, 3746–3755
dc.descriptionNote : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
dc.description.abstractEnoxaparin, one of the most important low-molecular-weight heparins (LMWHs), is widely used as a clinical anticoagulant. Different production processes and animal sources of its precursor (unfractionated heparin) can result in the structural diversity of enoxaparin. In this study, 38 lots of enoxaparin prepared at different times, from different providers and animal sources, were systematically analyzed. SEC and SAX were used to analyze the oligosaccharide dispersity and structural compositions (disaccharide domains) of enoxaparins by size and charge, respectively. The results provide clues as to whether the structural variations in enoxaparin, observed in oligosaccharide mapping and/or disaccharide analysis, are attributable to differences in the animal sources of its heparin precursor or enoxaparin production processes based on times or brands. The representative enoxaparins were fingerprinted with online multiple heart-cut two-dimensional liquid chromatography-mass spectrometry (MHC-2DLC-MS). The profiles in MHC-2DLC-MS showed the detailed structural information of enoxaparins. In addition, the binding capacities to antithrombin III (AT) of these 38 lots of enoxaparins were detected using surface plasmon resonance (SPR) with the competitive inhibition mode. The results showed that the glycan size distribution of an enoxaparin is more related to its production process. The disaccharide composition, sequence and the variety of glycans of an enoxaparin are more related to its AT binding-based anticoagulant activity.
dc.description.sponsorshipNational Natural Science Foundation of China
dc.relation.ispartofThe Linhardt Research Labs Online Collection
dc.relation.ispartofRensselaer Polytechnic Institute, Troy, NY
dc.subjectChemistry and chemical biology
dc.subjectChemical and biological engineering
dc.subjectBiomedical engineering
dc.titleSystematic analysis of enoxaparins from different sources with online one- and two-dimensional chromatography
dc.rights.holderIn Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.relation.departmentThe Linhardt Research Labs.
dc.relation.departmentThe Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record