Fucosylated chondroitin sulfate from Isostichopus badionotus alleviates metabolic syndromes and gut microbiota dysbiosis induced by high-fat and high-fructose diet

Authors
Li, Shan
Li, Junhui
Mao, Guizhu
Wu, Tiantian
Lin, Dingbo
Hu, Yaqin
Ye, Xingqian
Tian, Ding
Chai, Wengang
Linhardt, Robert J.
ORCID
https://orcid.org/0000-0003-2219-5833
No Thumbnail Available
Other Contributors
Issue Date
2019-03-01
Keywords
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Degree
Terms of Use
In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/
Full Citation
Fucosylated chondroitin sulfate from Isostichopus badionotus alleviates metabolic syndromes and gut microbiota dysbiosis induced by high-fat and high-fructose diet, S. Li, J. Li, G. Mao, T. Wu, D. Lin, Y. Hu, X. Ye, D. Tian, W. Chai, R.J. Linhardt, S. Chen, International Journal of Biological Macromolecules,124, 377–388, 2019
Abstract
Fucosylated chondroitin sulfate from Isostichopus badionotus (fCS-Ib) is a kind of sulfated polysaccharides with well-repeated structure. In our former publications, fCS-Ib has been reported to be a functional food ingredient with hypoglycemic and antilipemic activities. However, there is no systematic study to investigate the effects of fCS-Ib on metabolic syndromes. In the present study, C57BL/6 mice fed on a high-fat and high sucrose diet (HFSD) for 6 weeks was used to cause metabolic syndromes. The final results showed that fCS-Ib alleviated obesity, hyperlipidemia, hyperglycemia, inflammation, liver steatosis, and adipocyte hypertrophy caused by HFSD. Meanwhile, fCS-Ib showed powerful effects on moderating gut microbiota dysbiosis in the HFSD-fed mice. Supplement of fCS-Ib could reduce ratio of Firmicutes to Bacteroidetes by decreasing abundance of Lachnospiraceae and Allobaculum while increasing abundance of Porphyromonadaceae, Barnesiella, and Bacteroides. Our results showed that fCS-Ib could be further developed as a potential pharmaceutical agent to prevent metabolic syndromes and gut microbiota dysbiosis.
Description
International Journal of Biological Macromolecules,124, 377–388
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Department
The Linhardt Research Labs.
The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)
Publisher
Relationships
The Linhardt Research Labs Online Collection
Rensselaer Polytechnic Institute, Troy, NY
International Journal of Biological Macromolecules
https://harc.rpi.edu/
Access
https://login.libproxy.rpi.edu/login?url=https://doi.org/10.1016/j.ijbiomac.2018.11.167