• Login
    View Item 
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Metabolic engineering of capsular polysaccharides

    Author
    Williams, Asher; Linhardt, Robert J.; Koffas, Mattheos A.G.
    ORCID
    https://orcid.org/0000-0003-2219-5833
    Thumbnail
    Other Contributors
    Date Issued
    2018-10-01
    Subject
    Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineering
    Degree
    Terms of Use
    In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/;
    Full Citation
    Metabolic engineering of capsular polysaccharides, A. Williams, R.J. Linhardt, M.A.G. Koffas, Emerging Topics in Life Science, 2, 337-348, 2018.
    Metadata
    Show full item record
    URI
    https://doi.org/10.1042/ETLS20180003; https://hdl.handle.net/20.500.13015/5577
    Abstract
    With rising concerns about sustainable practices, environmental complications, and declining resources, metabolic engineers are transforming microorganisms into cellular factories for producing capsular polysaccharides (CPSs). This review provides an overview of strategies employed for the metabolic engineering of heparosan, chondroitin, hyaluronan, and polysialic acid — four CPSs that are of interest for manufacturing a variety of biomedical applications. Methods described include the exploitation of wild-type and engineered native CPS producers, as well as genetically engineered heterologous hosts developed through the improvement of naturally existing pathways or newly (de novo) designed ones. The implementation of methodologies like gene knockout, promoter engineering, and gene expression level control has resulted in multiple-fold improvements in CPS fermentation titers compared with wild-type strains, and substantial increases in productivity, reaching as high as 100% in some cases. Optimization of these biotechnological processes can permit the adoption of industrially competitive engineered microorganisms to replace traditional sources that are generally toxic, unreliable, and inconsistent in product quality.;
    Description
    Emerging Topics in Life Science, 2, 337-348; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
    Department
    The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);
    Relationships
    The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; Emerging Topics in Life Sciences; https://harc.rpi.edu/;
    Access
    https://login.libproxy.rpi.edu/login?url=https://doi.org/10.1042/ETLS20180003;
    Collections
    • Linhardt Research Labs Papers

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV