• Login
    View Item 
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Macromolecular properties and hypolipidemic effects of four sulfated polysaccharides from sea cucumbers

    Author
    Li, Shan; Li, Junhui; Zhi, Zijian; Wei, Chaoyang; Wang, Wenjun; Ding, Tian; Ye, Xingqian; Hu, Yaqin; Linhardt, Robert J.; Chen, Shiguo
    ORCID
    https://orcid.org/0000-0003-2219-5833
    Thumbnail
    Other Contributors
    Date Issued
    2017-10-01
    Subject
    Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineering
    Degree
    Terms of Use
    In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/;
    Full Citation
    Macromolecular properties and hypolipidemic effects of four sulfated polysaccharides from sea cucumbers, S. Li, J. Li, Z. Zhi, C. Wei, W. Wang, T. Ding, X. Ye, Y. Hu, R. J. Linhardt, S. Chen, Carbohydrate Polymers, 173, 330–337, 2017.
    Metadata
    Show full item record
    URI
    https://doi.org/10.1016/j.carbpol.2017.05.063; https://hdl.handle.net/20.500.13015/5623
    Abstract
    The present study investigates the relationship between the high-order structure and hypolipidemic activity of four well-defined sulfated fucans from sea cucumber. The chain conformation, determined by a combination of AFM and SEC-MALLS-RI, indicate that fucosylated chondroitin sulfate (fCS) from Pearsonothuria graeffei (fCS-Pg) and Isostichopus badionotus (fCS-Ib), and fucoidan from P.graeffei (fuc-Pg) were assigned as a random coil conformation with polysaccharide chain outstretched, while I. badionotus (fuc-Ib) was assigned as a spherical conformation and exhibited high viscosity. Fuc-Pg and fuc-Ib with higher molecular weights had a greater impact in inhibiting pancreatic lipase activity in vitro. However, fCS-Pg, fCS-Ib and fuc-Pg with random linear conformation exhibited excellent hypolipidemic activity in Sprague-Dawley rats (SD rats) fed on high-fat diet (HFD), whereas fuc-Ib showed only a modest effect. Our results indicate that structural characteristics, including side branch and sulfation pattern can affect the chain conformation of polysaccharides, which determine their physicochemical properties and hypolipidemic activity.;
    Description
    Carbohydrate Polymers, 173, 330–337; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
    Department
    The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);
    Relationships
    The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; Carbohydrate Polymers; https://harc.rpi.edu/;
    Access
    https://login.libproxy.rpi.edu/login?url=https://doi.org/10.1016/j.carbpol.2017.05.063;
    Collections
    • Linhardt Research Labs Papers

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV