Show simple item record

dc.contributor.authorKwon, Seok Joon
dc.contributor.authorNa, Dong Hee
dc.contributor.authorKwak, Jong Hwan
dc.contributor.authorDouaisi, Marc
dc.contributor.authorZhang, Fuming
dc.contributor.authorPark, Eun Ji
dc.contributor.authorPark, Jong Hwan
dc.contributor.authorYoun, Hana
dc.contributor.authorSong, Chang Seon
dc.contributor.authorKane, Ravi S.
dc.contributor.authorDordick, Jonathan S.
dc.contributor.authorLee, Kyung Bok
dc.contributor.authorLinhardt, Robert J.
dc.identifier.citationNanostructured glycan architecture is important in the inhibition of influenza A virus infection, S.-J. Kwon, D. H. Na, J. H. Kwak, M. Douaisi, F. Zhang, E. J. Park, J.-H. Park, H. Youn, C.-S. Song, R. S. Kane, J. S. Dordick, K. B. Lee, R. J. Linhardt, Nature Nanotechnology, 12, 48-56, 2017.
dc.descriptionNature Nanotechnology, 12, 48-56
dc.descriptionNote : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
dc.description.abstractRapid change and zoonotic transmission to humans have enhanced the virulence of the influenza A virus (IAV)3. Neutralizing antibodies fail to provide lasting protection from seasonal epidemics1,4. Furthermore, the effectiveness of anti-influenza neuraminidase inhibitors has declined because of drug resistance5. Drugs that can block viral attachment and cell entry independent of antigenic evolution or drug resistance might address these problems. We show that multivalent 6′-sialyllactose-polyamidoamine (6SL–PAMAM) conjugates, when designed to have well-defined ligand valencies and spacings, can effectively inhibit IAV infection. Generation 4 (G4) 6SL–PAMAM conjugates with a spacing of around 3 nm between 6SL ligands (S3–G4) showed the strongest binding to a hemagglutinin trimer (dissociation constant of 1.6 × 10−7 M) and afforded the best inhibition of H1N1 infection. S3–G4 conjugates were resistant to hydrolysis by H1N1 neuraminidase. These conjugates protected 75% of mice from a lethal challenge with H1N1 and prevented weight loss in infected animals. The structure-based design of multivalent nanomaterials, involving modulation of nanoscale backbone structures and number and spacing between ligands, resulted in optimal inhibition of IAV infection. This approach may be broadly applicable for designing effective and enduring therapeutic protection against human or avian influenza viruses.
dc.description.sponsorshipMinistry of Education
dc.relation.ispartofThe Linhardt Research Labs Online Collection
dc.relation.ispartofRensselaer Polytechnic Institute, Troy, NY
dc.relation.ispartofNature Nanotechnology
dc.subjectChemistry and chemical biology
dc.subjectChemical and biological engineering
dc.subjectBiomedical engineering
dc.titleNanostructured glycan architecture is important in the inhibition of influenza A virus infection
dc.rights.holderIn Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.relation.departmentThe Linhardt Research Labs.
dc.relation.departmentThe Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record