• Login
    View Item 
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Expanding the chemical space of polyketides through structure-guided mutagenesis of Vitis vinifera stilbene synthase

    Author
    Bhan, Namita; Cress, Brady F.; Linhardt, Robert J.; Koffas, Mattheos
    ORCID
    https://orcid.org/0000-0003-2219-5833
    Thumbnail
    Other Contributors
    Date Issued
    2015-06-11
    Subject
    Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineering
    Degree
    Terms of Use
    In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/;
    Full Citation
    Expanding the chemical space of polyketides through structure-guided mutagenesis of Vitis vinifera stilbene synthase, N. Bhan, B. Cress, R. J. Linhardt, M. Koffas, Biochemie, 115, 136-143, 2015.
    Metadata
    Show full item record
    URI
    https://doi.org/10.1016/j.biochi.2015.05.019; https://hdl.handle.net/20.500.13015/5678
    Abstract
    Several natural polyketides (PKs) have been associated with important pharmaceutical properties. Type III polyketide synthases (PKS) that generate aromatic PK polyketides have been studied extensively for their substrate promiscuity and product diversity. Stilbene synthase-like (STS) enzymes are unique in the type III PKS class as they possess a hydrogen bonding network, furnishing them with thioesterase-like properties, resulting in aldol condensation of the polyketide intermediates formed. Chalcone synthases (CHS) in contrast, lack this hydrogen-bonding network, resulting primarily in the Claisen condensation of the polyketide intermediates formed. We have attempted to expand the chemical space of this interesting class of compounds generated by creating structure-guided mutants of Vitis vinifera STS. Further, we have utilized a previously established workflow to quickly compare the wild-type reaction products to those generated by the mutants and identify novel PKs formed by using XCMS analysis of LC-MS and LC-MS/MS data. Based on this approach, we were able to generate 15 previously unreported PK molecules by exploring the substrate promiscuity of the wild-type enzyme and all mutants using unnatural substrates. These structures were specific to STSs and cannot be formed by their closely related CHS-like counterparts.;
    Description
    Biochemie, 115, 136-143; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
    Department
    The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);
    Relationships
    The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; Biochimie; https://harc.rpi.edu/;
    Access
    https://login.libproxy.rpi.edu/login?url=https://doi.org/10.1016/j.biochi.2015.05.019;
    Collections
    • Linhardt Research Labs Papers

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV