Uniform nanoparticle coating of cellulose fibers during wet electrospinning

Authors
Zheng, Yingying
Miao, Jianjun
Maeda, Noriko
Frey, David
Linhardt, Robert J.
Simmons, Trevor J.
ORCID
https://orcid.org/0000-0003-2219-5833
No Thumbnail Available
Other Contributors
Issue Date
2014-09-28
Keywords
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Degree
Terms of Use
In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/
Full Citation
Uniform nanoparticle coating of cellulose fibers during wet electrospinning, Y. Zheng, J. Miao, R. J. Linhardt, T. J. Simmons, Journal of Materials Chemistry A, 2, 15029–15034, 2014.
Abstract
This work outlines a newly developed method that allows electrospun cellulose fibers to be coated with nanoparticles during dry-jet wet electrospinning. Cellulose fibers were wet electrospun from a room temperature ionic liquid solvent into a coagulation bath containing an aqueous suspension of magnesium hydroxide nanoparticles to prepare composites of nanofibers coated with functional nanoparticles. Flame retardant cellulose–magnesium hydroxide coated composite fibers were prepared to demonstrate this novel electrospinning method. The placement of the nanoparticles exclusively on the surface of the cellulose fibers dramatically impacted the functionality of the fibers. Electrospun cellulose fibers exhibited an onset of combustion in air at 239 °C and a maximum mass loss at 302 °C. Cellulose fibers with Mg(OH)2 nanoparticles (<50 nm avg. diameter) inside them exhibited an onset of combustion at 267 °C and a maximum mass loss at 315 °C. Cellulose fibers with the same nanoparticles uniformly coated on their surfaces exhibited an onset of combustion at 276 °C and a maximum mass loss at 318 °C. When larger Mg(OH)2 nanoparticles (>100 nm avg. diameter) were used, the onset of combustion was 185 °C and the maximum mass loss was at 216 °C when nanoparticles were inside the fibers, and the onset of combustion was 263 °C and the maximum mass loss was at 317 °C for Mg(OH)2 nanoparticle coated cellulose fibers. Simple flame tests showed a similar trend, with nanoparticle-coated fibers being fire resistant and fibers with nanoparticles inside burned rapidly upon exposure to an open flame.
Description
Journal of Materials Chemistry A, 2, 15029–15034
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Department
The Linhardt Research Labs.
The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)
Publisher
Relationships
The Linhardt Research Labs Online Collection
Rensselaer Polytechnic Institute, Troy, NY
Journal of Materials Chemistry A
https://harc.rpi.edu/
Access
https://login.libproxy.rpi.edu/login?url=https://doi.org/10.1039/c4ta03221g