• Login
    View Item 
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Metabolic engineering and in vitro biosynthesis of natural and non-natural analogues of plant metabolites

    Author
    Mora-Pale, M.; Sanchez-Rodriguez, S.P.; Linhardt, R.J.; Dordick, J.S.; Koffas, M.A.G.
    ORCID
    https://orcid.org/0000-0003-2219-5833
    Thumbnail
    Other Contributors
    Date Issued
    2013
    Subject
    Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineering
    Degree
    Terms of Use
    In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/;
    Full Citation
    Metabolic engineering and in vitro biosynthesis of natural and non-natural analogues of plant metabolites, M. Mora-Pale, S. P. Sanchez-Rodriguez, R. J. Linhatrdt, J. S. Dordick, M. A. G. Koffas, Plant Science, 210, 10–24, 2013.
    Metadata
    Show full item record
    URI
    https://doi.org/10.1016/j.plantsci.2013.05.005; https://hdl.handle.net/20.500.13015/5704
    Abstract
    Over the years, natural products from plants and their non-natural derivatives have shown to be active against different types of chronic diseases. However, isolation of such natural products can be limited due to their low bioavailability, and environmental restrictions. To address these issues, in vivo and in vitro reconstruction of plant metabolic pathways and the metabolic engineering of microbes and plants have been used to generate libraries of compounds. Significant advances have been made through metabolic engineering of microbes and plant cells to generate a variety of compounds (e.g. isoprenoids, flavonoids, or stilbenes) using a diverse array of methods to optimize these processes (e.g. host selection, operational variables, precursor selection, gene modifications). These approaches have been used also to generate non-natural analogues with different bioactivities. In vitro biosynthesis allows the synthesis of intermediates as well as final products avoiding post-translational limitations. Moreover, this strategy allows the use of substrates and the production of metabolites that could be toxic for cells, or expand the biosynthesis into non-conventional media (e.g. organic solvents, supercritical fluids). A perspective is also provided on the challenges for generating novel chemical structures and the potential of combining metabolic engineering and in vitro biocatalysis to produce metabolites with more potent biological activities.;
    Description
    Plant Science, 210, 10–24; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
    Department
    The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);
    Relationships
    The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; https://harc.rpi.edu/;
    Access
    https://login.libproxy.rpi.edu/login?url=https://doi.org/10.1016/j.plantsci.2013.05.005;
    Collections
    • Linhardt Research Labs Papers

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV