• Login
    View Item 
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Flexible electrospun cellulose fibers as an affinity packing material for the separation of bovine serum albumin

    Author
    Miyauchi, M.; Miao, J.; Simmons, T.J.; Dordick, J.S.; Linhardt, Robert J.
    ORCID
    https://orcid.org/0000-0003-2219-5833
    Thumbnail
    Other Contributors
    Date Issued
    2011
    Subject
    Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineering
    Degree
    Terms of Use
    In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/;
    Full Citation
    Flexible electrospun cellulose fibers as an affinity packing material for the separation of bovine serum albumin, M. Miyauchi, J. Miao, T. J. Simmons, J. S. Dordick, R.J. Linhardt, Journal of Chromatography and Separation Techniques, 2,1-4, 2011.
    Metadata
    Show full item record
    URI
    https://doi.org/10.4172/2157-7064.1000110; https://hdl.handle.net/20.500.13015/5718
    Abstract
    Flexible, well-dispersed and continuous 100-nm diameter cellulose fibers were prepared from an ionic liquid solvent by a novel dry-jet wet-electrospinning process. The ribbon fibers formed were chemically activated and an affinity dye, cibacron blue (CB) was immobilized at 0.22 g CB/g dry fibers loading to the surface of these fibers. The resulting affinity matrix was packed into a chromatography column and the adsorption, desorption, and specificity of this matrix for bovine serum albumin (BSA) was studied. These electrospun fibers had a BSA binding capacity of 230 mg/g, nearly twice that of CB-immobilized 100-um beads and over ten-fold higher capacity that CB-immobilized cellulose fibers prepared by a conventional electrospinning process. The results of this work suggest that chromatography supports of flexible, well-dispersed, continuous nanofibers may offer advantages over conventional supports in affinity separations.;
    Description
    Journal of Chromatography and Separation Techniques, 2,1-4; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
    Department
    The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);
    Relationships
    The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; https://harc.rpi.edu/;
    Access
    https://login.libproxy.rpi.edu/login?url=https://doi.org/10.4172/2157-7064.1000110;
    Collections
    • Linhardt Research Labs Papers

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV