• Login
    View Item 
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ionic Liquid Solvent Properties as Predictors of Lignocellulose Pretreatment Efficacy

    Author
    Doherty, Thomas V.; Mora-Pale, Mauricio; Foley, Sage E.; Linhardt, Robert J.; Dordick, Jonathan S.
    ORCID
    https://orcid.org/0000-0003-2219-5833
    Thumbnail
    Other Contributors
    Date Issued
    2010-11-03
    Subject
    Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineering
    Degree
    Terms of Use
    In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/;
    Full Citation
    Ionic Liquid Solvent Properties as Predictors of Lignocellulose Pretreatment Efficacy, T. V. Doherty, M. Mora-Pale, S. Foley, R. J. Linhardt, J. S. Dordick, Green Chemistry, 12, 1967-1975, 2010.
    Metadata
    Show full item record
    URI
    https://doi.org/10.1039/c0gc00206b; https://hdl.handle.net/20.500.13015/5734
    Abstract
    Effective pretreatment of lignocellulosic biomass is vital to its bioconversion to a usable liquid fuel. A growing body of work has focused on using room temperature ionic liquids (RTILs) to pretreat lignocellulose for subsequent fermentation. However, little is known about the physicochemical parameters of RTILs that promote effective pretreatment. In this work we examine the relationship between the Kamlet–Taft α, β, and π* solvent polarity parameters of different RTILs ([Emim][OAc], [Bmim][OAc], and [Bmim][MeSO4]) and effective pretreatment of lignocellulosic biomass. We find the β parameter is an excellent predictor of pretreatment efficacy. Acetate containing RTILs (β > 1.0) remove >32% of lignin from maple wood flour and significantly reduce cellulose crystallinity, resulting in >65% glucose yields after 12 h cellulase hydrolysis. Pretreatment in [Bmim][MeSO4] (β = 0.60) results in the removal of only 19% of the wood flour's lignin with no decrease in crystallinity, and no improvement in sugar yield over untreated wood flour. The addition of water and the dilution of the acetate anion with the methyl sulfate anion decrease the β value and subsequently have a negative impact on lignin extraction, cellulose crystallinity, and sugar yields.;
    Description
    Green Chemistry, 12, 1967-1975; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
    Department
    The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);
    Relationships
    The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; Green Chemistry; https://harc.rpi.edu/;
    Access
    https://login.libproxy.rpi.edu/login?url=https://doi.org/10.1039/c0gc00206b;
    Collections
    • Linhardt Research Labs Papers

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV