Heparin-based nanoparticles

Authors
Kemp M.M.
Linhardt, Robert J.
ORCID
https://orcid.org/0000-0003-2219-5833
No Thumbnail Available
Other Contributors
Issue Date
2010
Keywords
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Degree
Terms of Use
In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/
Full Citation
Heparin-based nanoparticles, M. M. Kemp and R. J. Linhardt, Nanomedicine and Nanobiotechnology, 2, 77 – 87, 2010.
Abstract
Numerous papers on heparin nanoparticles have been reported regarding targeting therapy and biomedical imaging. Here, we have summarized the prospects and opportunities of heparin as a carrier for cancer targeting and imaging. First, we proposed heparin-anticancer drug conjugates showing higher anticancer activity than free drug. The conjugated heparin (heparin-deoxycholate sodium) retained its ability to bind with angiogenic factors, showing a significant decrease in endothelial tubular formation. Second, targeting ligands conjugated heparin derivatives have introduced for a receptor mediated delivery of anticancer drug. Heparin-folic acid-retinoic acid (HFR) bioconjugates for treating cancer cells showed 3 fold higher efficacy than heparin-retinoic acid (HR). Besides active and passive targeting drug delivery, several papers have been reported regarding delivery of imaging agents by heparin nanoparticles. Finally, this research highlight has covered imaging agents such as gold nanoparticles and quantum dots (QDs) for noninvasive biomedical imaging. Very recently our group demonstrated that semiconductor QDs loaded heparin nanoparticles could also be administered through orally for noninvasive imaging. Due to promising features of heparin such as less toxic polysaccharide and easier modification, it was considered as a potent carrier for imaging agent and drug delivery.
Description
Nanomedicine and Nanobiotechnology, 2, 77–87
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Department
The Linhardt Research Labs.
The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)
Publisher
Relationships
The Linhardt Research Labs Online Collection
Rensselaer Polytechnic Institute, Troy, NY
https://harc.rpi.edu/
Access
https://login.libproxy.rpi.edu/login?url=https://doi.org/10.1002/wnan.68