Flexible Nanocomposite Thin Film Energy Storage Devices

Authors
Pushparaj, V.L.
Manikoth, S.M.
Kumar, A.
Murugesan, S.
Ci, L.
Vajtai, R.
Linhardt, Robert J.
Nalamasu, O.
Ajayan, P.M.
ORCID
https://orcid.org/0000-0003-2219-5833
No Thumbnail Available
Other Contributors
Issue Date
2007
Keywords
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Degree
Terms of Use
In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/
Full Citation
Flexible Nanocomposite Thin Film Energy Storage Devices, V. L Pushparaj, S. M. Manikoth, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R. J. Linhardt, O. Nalamasu, P. M. Ajayan, Proceedings of the National Academy of Science USA 104, 13574-13577, 2007.
Abstract
There is strong recent interest in ultrathin, flexible, safe energy storage devices to meet the various design and power needs of modern gadgets. To build such fully flexible and robust electrochemical devices, multiple components with specific electrochemical and interfacial properties need to be integrated into single units. Here we show that these basic components, the electrode, separator, and electrolyte, can all be integrated into single contiguous nanocomposite units that can serve as building blocks for a variety of thin mechanically flexible energy storage devices. Nanoporous cellulose paper embedded with aligned carbon nanotube electrode and electrolyte constitutes the basic unit. The units are used to build various flexible supercapacitor, battery, hybrid, and dual-storage battery-in-supercapacitor devices. The thin freestanding nanocomposite paper devices offer complete mechanical flexibility during operation. The supercapacitors operate with electrolytes including aqueous solvents, room temperature ionic liquids, and bioelectrolytes and over record temperature ranges. These easy-to-assemble integrated nanocomposite energy-storage systems could provide unprecedented design ingenuity for a variety of devices operating over a wide range of temperature and environmental conditions.
Description
Proceedings of the National Academy of Science USA 104, 13574-13577
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Department
The Linhardt Research Labs.
The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)
Publisher
Relationships
The Linhardt Research Labs Online Collection
Rensselaer Polytechnic Institute, Troy, NY
https://harc.rpi.edu/
Access
https://login.libproxy.rpi.edu/login?url=https://doi.org/10.1073/pnas.0706508104