• Login
    View Item 
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synthesis of Serine-Based Neuraminic Acid C-Glycoside

    Author
    Wang, Qun; Linhardt, Robert J.
    ORCID
    https://orcid.org/0000-0003-2219-5833
    Thumbnail
    Other Contributors
    Date Issued
    2003-04-04
    Subject
    Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineering
    Degree
    Terms of Use
    In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/;
    Full Citation
    Synthesis of Serine-Based Neuraminic Acid C-Glycoside, Q. Wang, R.J. Linhardt, Journal of Organic Chemistry, 68, 2668-2672, 2003.
    Metadata
    Show full item record
    URI
    https://doi.org/10.1021/jo026776v; https://hdl.handle.net/20.500.13015/5813
    Abstract
    Cell-surface carbohydrates are classified by the nature of their linkages to the protein as either N-linked or O-linked. O- and N-glycans are involved in a number of important biological functions. These activities can be lost on glycoprotein catabolism when these glycan linkages are enzymatically hydrolyzed. The design and synthesis of novel C-linked glycans should provide catabolically stable glycoproteins useful for understanding and regulating important biological processes. Our efforts are currently directed toward the synthesis of C-glycosides of ulosonic acids. This paper describes the first synthesis of a serine-based neuraminic acid C-glycoside. The protecting group chemistry required for both carbohydrate and peptide syntheses complicates this approach. Different protecting group strategies were investigated for use in the samarium diiodide mediated C-glycosylation reaction. The key elements of our synthetic approach involve the following: (i) the substitution of homoserine for serine in the C-glycosylation reaction to introduce a carbon in place of the O-glycosidic oxygen, (ii) the use of benzyloxycarbonyl as a homoserine protecting group, compatible with samarium diiodide mediated C-glycosylation reaction, and (iii) the reduction of the carbonyl group in homoserine early in the synthesis to improve C-glycosylation yield and to avoid lactone formation. Using this combined approach, we prepared 4-O-acetyl-4-[2-C-(1-methyl 5-acetamido 4,7,8,9-tetra-O-acetyl-2,6-anhydro-3,5-dideoxy-d-erythro-l-manno-nononate)]-2S-(benzyloxycarbonyl)amino-1-carboxylic acid (1), which will be used in peptide synthesis to prepare glycopeptides containing catabolically stable C-linked neuraminic acid.;
    Description
    Journal of Organic Chemistry, 68, 2668-2672; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
    Department
    The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);
    Relationships
    The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; Journal of Organic Chemistry; https://harc.rpi.edu/;
    Access
    https://login.libproxy.rpi.edu/login?url=https://doi.org/10.1021/jo026776v;
    Collections
    • Linhardt Research Labs Papers

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV