• Login
    View Item 
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identification of a Heparin Binding Peptide on the ExtracellularDomain of the KDR VEGF Receptor

    Author
    Dougher, M.; Torley, L.; Wasserstrom, H.; Shridaran, L.; Westdock, P.; Hileman, R.E.; Fromm, J.R.; Lyman, S.; Linhardt, Robert J.; Kaplan, J.; Terman, B.I.
    ORCID
    https://orcid.org/0000-0003-2219-5833
    Thumbnail
    Other Contributors
    Date Issued
    1997
    Subject
    Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineering
    Degree
    Terms of Use
    In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/;
    Full Citation
    Identification of a Heparin Binding Peptide on the ExtracellularDomain of the KDR VEGF Receptor, M. Dougher, L. Torley, H. Wasserstrom,L. Shridaran, P. Westdock, R.E. Hileman, J.R. Fromm, S. Lyman, R.J. Linhardt,J. Kaplan, B.I. Terman Growth Factors, 14, 257-268, 1997.
    Metadata
    Show full item record
    URI
    https://doi.org/10.3109/08977199709021524; https://hdl.handle.net/20.500.13015/5909
    Abstract
    Vascular endothelial growth factor (VEGF), a potent and specific activator of endothelial cells, is expressed as multiple homodimeric forms resulting from alternative RNA splicing. VEGF121 does not bind heparin while the other three isoforms do, and it has been documented that the binding of VEGF165 to its receptor is dependent upon cell surface heparin sulfate proteoglycans. Little is known about the biochemical mechanism that allows for heparin regulation of growth factor binding. For example, it is not clear whether heparin interactions with growth factor or with cell surface receptors or both are essential for VEGF binding to its receptor. In this manuscript we provide results which are consistent with the hypothesis that an interaction between heparin and a site on the KDR receptor subtype is essential for VEGF165 binding. First, we demonstrate that expression of KDR into a CHO cell line deficient in heparan sulfate biosynthesis does not allow VEGF165 binding unless heparin is exogenously added during the binding assay. Secondly, we show that a ten amino acid synthetic peptide, corresponding to a sequence from the extracellular domain of the KDR, both inhibits VEGF165 binding to the receptor and also binds heparin with high avidity. Third, affinity purification of heparin molecules on a KDR-derived peptide affinity column, together with capillary electrophoresis and polyacrylamide electrophoresis analysis, was used to show that the KDR-derived peptide interacts with a specific subset of polysaccharide chains contained in the unfractionated heparin. Taken together, these results are consistent with the hypothesis that interactions between cell surface heparan sulfate proteoglycans and the VEGF receptor contribute to allowing maximal VEGF binding.;
    Description
    Growth Factors, 14, 257-268; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
    Department
    The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);
    Relationships
    The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; https://harc.rpi.edu/;
    Access
    https://login.libproxy.rpi.edu/login?url=https://doi.org/10.3109/08977199709021524;
    Collections
    • Linhardt Research Labs Papers

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV