• Login
    View Item 
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Preparation and Structural Characterization of Large Heparin-Derived Oligosaccharides

    Author
    Pervin, Azra; Gallo, Cindy; Jandik, Kenneth A.; Han, Xue Jun; Linhardt, Robert J.
    ORCID
    https://orcid.org/0000-0003-2219-5833
    Thumbnail
    Other Contributors
    Date Issued
    1995-02-01
    Subject
    Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineering
    Degree
    Terms of Use
    In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/;
    Full Citation
    Preparation and Structural Characterization of Large Heparin-Derived Oligosaccharides, A. Pervin, C. Gallo, K. Jandik, X.-J. Han, R. J. Linhardt, Glycobiology, 5, 83-95, 1995.
    Metadata
    Show full item record
    URI
    https://doi.org/10.1093/glycob/5.1.83; https://hdl.handle.net/20.500.13015/5958
    Abstract
    Porcine mucosal heparin was partially depolymerized with heparin lyase I and then fractionated into low-molecular-weight (< 5000) and high-molecular-weight (> 5000) oligosaccharides by pressure filtration. The high-molecular-weight oligosaccharide mixture (approximately 50 wt% of the starting heparin) also contained intact heparin. This intact polymer complicates oligosaccharide purification. Thus, the low-molecular-weight fraction was used to prepare homogeneous oligosaccharides for structural characterization. The low-molecular-weight oligosaccharide mixture was first fractionated by low-pressure gel permeation chromatography into size-uniform mixtures of disaccharides, tetrasaccharides, hexasaccharides, octasaccharides, decasaccharides, dodecasaccharides, tetradecasaccharides and higher oligosaccharides. Each size-fractionated mixture was then purified on the basis of charge by repetitive semi-preparative strong-anion-exchange high-performance liquid chromatography. This approach has led to the isolation of 14 homogeneous oligosaccharides from disaccharide to tetradecasaccharide. The purity of these heparin-derived oligosaccharides was determined by gradient polyacrylamide gel electrophoresis, analytical strong-anion-exchange high-performance liquid chromatography, capillary electrophoresis and one-dimensional nuclear resonance spectroscopy. The structure of these oligosaccharides was established using 600 MHz two-dimensional nuclear resonance spectroscopy. The spectral methods used included homonuclear correlation spectroscopy, nuclear Overhauser effect spectroscopy and heteronuclear multiple quantum coherence spectroscopy. The 1H/1H connectivities of the protons of each sugar residue in an oligosaccharide were established by two-dimensional homonuclear correlation spectroscopy, while 1H/13C assignments were made using 1H inverse detection. One- and two-dimensional nuclear resonance spectroscopic analysis of these heparin oligosaccharides showed two closely related groups of heparin-oligosaccharides are afforded by enzymatic depolymerization of heparin. One group is fully sulphated, having the structures delta UAp2S(1[-->4)-alpha-D-GlcNpS6S(1-->4)-alpha-L-IdoAp2S( 1]n-->4)-alpha- D-GlcNpS6S, where delta UAp is 4-deoxy-alpha-L-threo-hex-4-eno-pyranosyluronic acid, GlcNp is 2-deoxy-2-aminoglucopyranose, IdoAp is idopyranosyluronic acid, S is sulphate and n = 0-6. The other group of oligosaccharides differ in that they contain beta-D-glucuronic acid in place of the alpha-L-iduronic acid residue nearest to the reducing end. The present study describes the isolation and structural elucidation of seven new oligosaccharides: an octasaccharide, two decasaccharides, two dodecasaccharides and two tetradecasaccharides. The utility of two-dimensional nuclear resonance spectroscopy to determine the structure of complex heparin oligosaccharides is also illustrated.;
    Description
    Glycobiology, 5, 83-95; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
    Department
    The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);
    Relationships
    The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; Glycobiology; https://harc.rpi.edu/;
    Access
    https://login.libproxy.rpi.edu/login?url=https://doi.org/10.1093/glycob/5.1.83;
    Collections
    • Linhardt Research Labs Papers

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV