Examination of the Substrate Specificity of Heparin and Heparan Sulfate Lyases

Authors
Linhardt, Robert J.
Turnbull, J.E.
Wang, H.M.
Loganathan, D.
Gallagher, J.T.
ORCID
https://orcid.org/0000-0003-2219-5833
No Thumbnail Available
Other Contributors
Issue Date
1990-03-01
Keywords
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Degree
Terms of Use
In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/
Full Citation
Examination of the Substrate Specificity of Heparin and Heparan Sulfate Lyases, R.J. Linhardt, J.E. Turnbull, H.M. Wang, D. Loganathan, J.T. Gallagher, Biochemistry, 29, 2611-2617 (1990).
Abstract
We have examined the activities of different preparations of heparin and heparan sulfate lyases from Flavobacterium heparinum. The enzymes were incubated with oligosaccharides of known size and sequence and with complex polysaccharide substrates, and the resulting degradation products were analyzed by strong-anion-exchange high-performance liquid chromatography and by oligosaccharide mapping using gradient polyacrylamide gel electrophoresis. Heparinase (EC 4.2.2.7) purified in our laboratory and a so-called Heparinase I (Hep I) from a commercial source yielded similar oligosaccharide maps with heparin substrates and displayed specificity for di- or trisulfated disaccharides of the structure----4)-alpha-D-GlcNp2S(6R)(1----4)-alpha-L-IdoAp2S( 1----(where R = O-sulfo or OH). Oligosaccharide mapping with two different commercial preparations of heparan sulfate lyase [heparitinase (EC 4.2.2.8)] indicated close similarities in their depolymerization of heparan sulfate. Furthermore, these enzymes only degraded defined oligosaccharides at hexosaminidic linkages with glucuronic acid:----4)-alpha-D-GlcNpR(1----4)-beta-D-GlcAp(1----(where R = N-acetamido or N-sulfo). The enzymes showed activity against solitary glucuronate-containing disaccharides in otherwise highly sulfated domains including the saccharide sequence that contains the antithrombin binding region in heparin. A different commercial enzyme, Heparinase II (Hep II), displayed a broad spectrum of activity against polysaccharide and oligosaccharide substrates, but mapping data indicated that it was a separate enzyme rather than a mixture of heparinase and heparitinase/Hep III. When used in conjunction with the described separation procedures, these enzymes are powerful reagents for the structural/sequence analysis of heparin and heparan sulfate.
Description
Biochemistry, 29, 2611-2617
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Department
The Linhardt Research Labs.
The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)
Publisher
Relationships
The Linhardt Research Labs Online Collection
Rensselaer Polytechnic Institute, Troy, NY
Biochemistry
https://harc.rpi.edu/
Access
https://login.libproxy.rpi.edu/login?url=https://doi.org/10.1021/bi00462a026