• Login
    View Item 
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Open Access
    • View Item
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Open Access
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Passive quenching electrical model of silicon photomultipliers (SSPMs)

    Author
    Wangerin, Kristen Ann
    Thumbnail
    View/Open
    11925_Title_Abstract_v1.pdf (55.72Kb)
    11926_WANGERIN_SSPM_THESIS_FINAL.PDF (4.096Mb)
    11928__WANGERIN_SSPM_THESIS_FINAL_PDF_index.html (110.1Kb)
    Other Contributors
    Danon, Yaron;
    Date Issued
    2008-08
    Subject
    Nuclear engineering
    Degree
    MS;
    Terms of Use
    This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.;
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/616
    Abstract
    SSPM detectors can be studied and improved through electrical modeling of the diode and readout circuit to simulate, characterize, and predict their response for different geometries and configurations. An electrical model was developed to simulate and investigate the effect of increasing diode area on the response of SSPMs. Passive components in the model are extracted from measurements and then used in the model to understand and predict device performance. The avalanche is represented with a switch in series with a voltage source and diode resistor, instead of a current source, which allows the change in potential, current through the diode, and timing of the avalanche to be simulated. Pulse shapes are compared for two different size devices, 1x1 and 3x3 mm 2 , to first validate the model and then demonstrate predictive capability. It is concluded that this electrical model can be used to better understand the design and development of SSPMs, particularly the effects of increasing parasitic capacitance on the timing and magnitude of the readout signal.;
    Description
    August 2008; School of Engineering
    Department
    Dept. of Mechanical, Aerospace, and Nuclear Engineering;
    Publisher
    Rensselaer Polytechnic Institute, Troy, NY
    Relationships
    Rensselaer Theses and Dissertations Online Collection;
    Access
    Users may download and share copies with attribution in accordance with a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. No commercial use or derivatives are permitted without the explicit approval of the author.;
    Collections
    • RPI Theses Online (Complete)
    • RPI Theses Open Access

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV