• Login
    View Item 
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Online (Complete)
    • View Item
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Online (Complete)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Shortest path network interdiction under uncertainty

    Author
    Punla-Green, She'ifa Zera
    ORCID
    https://orcid.org/0000-0003-4585-2728
    View/Open
    PunlaGreen_rpi_0185E_12066.pdf (2.132Mb)
    Other Contributors
    Mitchell, John E.; Bennett, Kristin P.; Hart-Davidson, William; Xu, Yangyang;
    Date Issued
    2022-08
    Subject
    Mathematics
    Degree
    PhD;
    Terms of Use
    This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute (RPI), Troy, NY. Copyright of original work retained by author.;
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/6255
    Abstract
    This research considers three extensions of the shortest path network interdiction problem to protect against parameter uncertainty. The shortest path interdiction problem is a game of two players with conflicting agendas and capabilities: an evader, who traverses the arcs of a network from a source node to a sink node using the path of shortest length, and an interdictor, who maximizes the length of the evader's shortest path by interdicting arcs on the network. It is usually assumed that the parameters defining the network are known exactly by both players. In the first variant, we consider the situation where the evader assumes the nominal parameter values while the interdictor uses robust optimization techniques to account for parameter uncertainty or sensor degradation. Solving the shortest path interdiction problem with asymmetric uncertainty protects the interdictor from investing in the obvious strategy if that strategy hinges on key interdictions performing as promised. It also provides an alternate strategy that mitigates the risk of these worst-case possibilities. In the second variant, we extend past the previous model to allow the interdictor to interdict an arc multiple times or bolster an arc to further combat parameter uncertainty. We formulate these problems as nonlinear mixed integer trilevel programs and show that they can be converted into mixed integer linear programs with second order cone constraints. The third variant extends an existing variant of the shortest path network interdiction problem where the evader has asymmetric knowledge of the network parameters. The interdictor knows exactly what the evader's misassumptions are and can leverage that information for an improved outcome. Our extension allows for interdictor uncertainty as to exactly what the evader assumes as the network parameters. We develop a decomposition algorithm to solve this model. For all models, we use random geometric networks and transportation networks to perform computational studies and demonstrate the unique decision strategies that our variants produce.;
    Description
    August 2022; School of Science
    Department
    Dept. of Mathematical Sciences;
    Publisher
    Rensselaer Polytechnic Institute, Troy, NY
    Relationships
    Rensselaer Theses and Dissertations Online Collection;
    Access
    Restricted to current Rensselaer faculty, staff and students in accordance with the Rensselaer Standard license. Access inquiries may be directed to the Rensselaer Libraries.;
    Collections
    • RPI Theses Online (Complete)

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV