• Login
    View Item 
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • z_Technical Services
    • View Item
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • z_Technical Services
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ultrathin , graphene oxide-based membranes for co2 capture from flue gas

    Author
    Zhou, Fanglei
    View/Open
    Zhou_rpi_0185E_11476.pdf (5.926Mb)
    Other Contributors
    Yu, Miao; Belfort, Georges; Cramer, Steven, M; Shi, Sufei; Bae, Chulsung;
    Date Issued
    2019-05
    Subject
    Chemical engineering
    Degree
    PhD;
    Terms of Use
    This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute (RPI), Troy, NY. Copyright of original work retained by author.;
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/6289
    Abstract
    Membrane technology for CO2 capture from flue gas exhibits the superior separation performance and attractive levelized cost of energy to achieve the post combustion capture goal set by the US Department of Energy (DOE), 90% capture of CO2 with purity of >95% with less than 35% increase in energy cost. Novel membrane materials with potential to greatly improve membrane performance, such as 2-dimensional graphene and graphene oxide (GO) and its derivatives, have attracted great attention as a new membrane building block, primarily owing to their potential to make the thinnest possible membranes and thus provide the highest permeance for separation. My research work is focused on ultrathin GO-based membranes for CO2 capture from flue gas. Previous studies have shown that free-standing GO laminates in flat-sheet has potential for selective transport of gas molecules. However, the relatively poor separation performance and lack of scalable membrane fabrication methods limit the development of practical use of GO-based membranes. We developed facile and scalable methods for depositing ultrathin GO-based membranes on both hollow fiber and flat sheet substrates. We firstly synthesized GO by modified Hummers method and further modified or functionalized GO material by ultra-sonication or amine-treatment. To deposit GO-based membranes on polymeric hollow fiber substrate, specifically on the inner surface of hollow fiber, we developed a novel, two-step modified vacuum-assisted coating method. Uniform and high-quality GO membranes were successfully deposited on hollow fibers according to our characterizations by field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray diffraction (XRD). Gas separation was conducted with the lab-designed permeation system, and the results on base-GO hollow fiber membranes showed a moderate CO2 separation performance. We then functionalized our GO membranes by incorporating CO2-philic agent, amines (including primary and secondary amine molecules), and verified the successful functionalization by further characterizations. The amine-functionalized GO hollow fiber membranes offered a predominant facilitated CO2 transport mechanism as an addition to solution-diffusion mechanism, and therefore presented a highly-efficient CO2 capture performance under elevated temperature and wet feed condition. Zero-dimensional material, graphene oxide quantum dots, was firstly used as membrane building blocks by a smart strategy that to deposit a carbon framework skeleton with single-walled carbon nanotubes, and then to fill the carbon frame layer by nitrogen-doped graphene oxide quantum dots (N-GOQDs). Membrane was prepared in both hollow fiber and flat sheet substrates to demonstrate its potential on different separation purposes. Characterizations indicated the unique membrane structure and carbon-based chemical compositions, and the gas permeation and water treatment tests suggested the excellent performance for molecular separations. Consequently, the N-GOQD membranes showed superior CO2 capture performance from model flue gas, and exhibited high rejection for various dye molecules and divalent salt. We also developed a scalable printing method for depositing large-area (>100 cm2) GO-based membranes on polymeric flat-sheet support. Membrane quality was characterized and improved by modifying the membrane printer, the GO ink composition and the printing methods. Preliminary results on gas permeation with different single gases indicated a great potential of the printed GO membranes for separating smaller gas molecules. Further study by adding CO2-philic agent as a second printing ink demonstrated a good CO2 capture performance.;
    Description
    May 2019; School of Engineering
    Department
    Dept. of Chemical and Biological Engineering;
    Publisher
    Rensselaer Polytechnic Institute, Troy, NY
    Relationships
    Rensselaer Theses and Dissertations Online Collection;
    Access
    Users may download and share copies with attribution in accordance with a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 license. No commercial use or derivatives are permitted without the explicit approval of the author.;
    Collections
    • z_Technical Services

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV