Show simple item record

dc.rights.licenseRestricted to current Rensselaer faculty, staff and students in accordance with the Rensselaer Standard license. Access inquiries may be directed to the Rensselaer Libraries.
dc.contributorHedden, Ronald, C
dc.contributorKarande, Pankaj
dc.contributor.advisorChakrapani, Vidhya
dc.contributor.advisorLakshmi, K. V.
dc.contributor.authorMark, Brian
dc.date.accessioned2022-10-18T19:04:44Z
dc.date.available2022-10-18T19:04:44Z
dc.date.issued2021-05
dc.identifier.urihttps://hdl.handle.net/20.500.13015/6300
dc.descriptionMay 2021
dc.descriptionSchool of Engineering
dc.description.abstractThe search for new sustainable energy sources has seen a substantial increase inattention as our current reliance on fossil fuels reaches a critical point in terms of supply and environmental impact. One promising avenue to sustainable energy is through the electrolytic splitting of water using solar light as an energy source. The work for this thesis focuses on exploring two different materials with the potential to perform and elucidate the water splitting reaction: benzimidazole phenol-porphyrin (BiP-PF10) and manganese oxides (MnOx). BiP-PF10 serves as a bio-mimic, modeling the oxygen-evolving complex (OEC) of photosystem II (PSII) in plants and cyanobacteria and the proton-coupled electron transfer (PCET) mechanism it uses for water splitting. Analysis of the PCET intermediate of BiP-PF10 led to the determination of the electronic environment during PCET, providing insight on further attempts to synthesize this reaction. Manganese is present in many photocatalytic compounds, so a study on manganese oxides, especially Mn2O3, would help us understand some of the mechanisms of water splitting. The results of the manganese oxide experiments are preliminary and show promise in terms of future analysis.
dc.languageENG
dc.language.isoen_US
dc.publisherRensselaer Polytechnic Institute, Troy, NY
dc.relation.ispartofRensselaer Theses and Dissertations Online Collection
dc.subjectChemical engineering
dc.titleAnalysis of natural and synthetic systems for photo-initiated water splitting
dc.typeElectronic thesis
dc.typeThesis
dc.date.updated2022-10-18T19:04:46Z
dc.rights.holderThis electronic version is a licensed copy owned by Rensselaer Polytechnic Institute (RPI), Troy, NY. Copyright of original work retained by author.
dc.description.degreeMS
dc.relation.departmentDept. of Chemical and Biological Engineering


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record