Show simple item record

dc.rights.licenseRestricted to current Rensselaer faculty, staff and students in accordance with the Rensselaer Standard license. Access inquiries may be directed to the Rensselaer Libraries.
dc.contributorHicken, Jason
dc.contributorKopsaftopoulos, Fotis
dc.contributorJulius, Agung
dc.contributorChristian, John
dc.contributor.advisorAnderson, Kurt
dc.contributor.authorCavanaugh, Sarah
dc.date.accessioned2023-01-17T20:06:41Z
dc.date.available2023-01-17T20:06:41Z
dc.date.issued2022-12
dc.identifier.urihttps://hdl.handle.net/20.500.13015/6338
dc.descriptionDecember 2022
dc.descriptionSchool of Engineering
dc.description.abstractA major, long-term problem facing space exploration and utilization today is the increase in space debris. As has been highlighted increasingly in both peer-reviewed literature and national media, space debris poses an active hazard to satellites in orbit and to the space environment as a whole. One commonly discussed solution is active debris removal. Active debris removal entails removing space debris from orbit quickly, therefore preventing it from impacting satellites and other space debris in orbit. This dissertation examines strategies to carry out active debris identification and removal using an inexpensive cube satellite platform. Primarily, the focus is navigation based on images collected by the satellite. This includes initial orbit determination, refinement of the orbit estimates, and rendezvous strategies. Matlab was used extensively to simulate the spacecraft and orbit environment. Findings include a novel strategy for initializing satellite position and an algorithm for performing more robust initial orbit determination on space debris from a space-based platform. Strategies for successfully completing a rendezvous with a piece of space debris using only an inexpensive camera were also examined. More broadly, the topics discussed in this dissertation show that vision-based navigation for space debris removal applications is a viable option, even when very inexpensive satellites are used. Further, much of the work done here is applicable to Space Situational Awareness (SSA), which is critical to understanding the environment in Earth orbit.
dc.languageENG
dc.language.isoen_US
dc.publisherRensselaer Polytechnic Institute, Troy, NY
dc.relation.ispartofRensselaer Theses and Dissertations Online Collection
dc.subjectAeronautical engineering
dc.titleAngles only initial orbit determination and navigation for space debris capture applications
dc.typeElectronic thesis
dc.typeThesis
dc.date.updated2023-01-17T20:06:44Z
dc.rights.holderThis electronic version is a licensed copy owned by Rensselaer Polytechnic Institute (RPI), Troy, NY. Copyright of original work retained by author.
dc.description.degreePhD
dc.relation.departmentDept. of Mechanical, Aerospace, and Nuclear Engineering


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record