Evidence for the oxidation of Earth’s crust from the evolution of manganese minerals

Authors
Hummer, D.
Golden, J.
Hystad, G.
Downs, R.
Eleish, Ahmed
Liu, C.
ORCID
No Thumbnail Available
Other Contributors
Issue Date
2020-01-01
Keywords
Degree
Terms of Use
Full Citation
Hummer, D.R., Golden, J.J., Hystad, G. et al. Evidence for the oxidation of Earth’s crust from the evolution of manganese minerals. Nat Commun 13, 960 (2022). https://doi.org/10.1038/s41467-022-28589-x
Abstract
Analysis of manganese mineral occurrences and valence states demonstrate oxidation of Earth’s crust through time. Changes in crustal redox state are critical to Earth’s evolution, but few methods exist for evaluating spatially averaged crustal redox state through time. Manganese (Mn) is a redox-sensitive metal whose variable oxidation states and abundance in crustal minerals make it a useful tracer of crustal oxidation. We find that the average oxidation state of crustal Mn occurrences has risen in the last 1 billion years in response to atmospheric oxygenation following a 66 ± 1 million-year time lag. We interpret this lag as the average time necessary to equilibrate the shallow crust to atmospheric oxygen fugacity. This study employs large mineralogical databases to evaluate geochemical conditions through Earth’s history, and we propose that this and other mineral data sets form an important class of proxies that constrain the evolving redox state of various Earth reservoirs.
Description
Department
Publisher
Nature Communications
Relationships
Access