• Login
    View Item 
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • z_[technical processing]
    • View Item
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • z_[technical processing]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Apparatus, methodology, and modeling for continuous in-situ impregnation of dry carbon fiber tows with thermoplastic polymers for use in additive manufacturing

    Author
    Garofalo, James, John
    View/Open
    Garofalo_rpi_0185E_11442.pdf (7.635Mb)
    Other Contributors
    Walczyk, Daniel; Tichy, John; Narayanan, Shankar; Ozisik, Rahmi; Bucinell, Ronald;
    Date Issued
    2018-12
    Subject
    Mechanical engineering
    Degree
    PhD;
    Terms of Use
    This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute (RPI), Troy, NY. Copyright of original work retained by author.;
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/6690
    Abstract
    A novel co-extrusion system for continuous fiber reinforced thermoplastic composites was designed, fabricated, and tested. This new process, called In-Situ Impregnation, is a pultrusion process that impregnates continuous dry fiber reinforcement tows in-situ with thermoplastic for applications ranging from additive manufacturing using robotic manipulation to automated fiber placement. The performance goal was to design a co-extrusion system that directly uses raw materials (thermoplastic pellets and rolls of carbon fiber tow) instead of ‘prepreg’ tow in an effort to streamline and cut costs in advanced composites manufacturing and deliver fully customizable fiber orientation. Analytical and computational modeling was conducted to describe the flow rate of polymer through the system, impregnation of the fibers with polymer, heat transfer and temperature uniformity of the die system, friction and fiber tensioning, and the interfacial shear strength between the polymer and the fibers. Multiple experiments were conducted on the working pultrusion system varying polymer, exit geometry, die temperature, and volumetric flow rate of polymer from a thermoplastic screw extruder to gather process-ability and validate the models. A new test method was developed to evaluate the relative interfacial shear strength of a carbon fiber tow (bundle) and thermoplastic polymer, which was tested experimentally and results were obtained for the three polymers used. Microscopy techniques were employed to estimate the degree of impregnation and fiber volume fraction based on cross sections of the resulting composite tows. Future work includes commercialization of the technology, automation of the manufacturing system, and publishing the work in peer reviewed academic journals.;
    Description
    December2018; School of Engineering
    Department
    Dept. of Mechanical, Aerospace, and Nuclear Engineering;
    Publisher
    Rensselaer Polytechnic Institute, Troy, NY
    Relationships
    Rensselaer Theses and Dissertations Online Collection;
    Access
    Restricted to current Rensselaer faculty, staff and students in accordance with the Rensselaer Standard license. Access inquiries may be directed to the Rensselaer Libraries.;
    Collections
    • z_[technical processing]

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV