Show simple item record

dc.rights.licenseCC BY-NC-ND. Users may download and share copies with attribution in accordance with a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. No commercial use or derivatives are permitted without the explicit approval of the author.
dc.contributorCheney, Margaret, 1955-
dc.contributorMayhan, Joseph
dc.contributorSiegmann, W. L.
dc.contributorIsaacson, David
dc.contributor.authorPalmeri, Heather
dc.date.accessioned2021-11-03T07:57:30Z
dc.date.available2021-11-03T07:57:30Z
dc.date.created2013-09-03T11:11:22Z
dc.date.issued2012-12
dc.identifier.urihttps://hdl.handle.net/20.500.13015/818
dc.descriptionDecember 2012
dc.descriptionSchool of Science
dc.description.abstractA novel hybrid 3D radar imaging technique is presented that jointly estimates both target shape and motion using range, range-rate, and phase. This work expands on research done by the author as an intern at MIT Lincoln Laboratory. It builds on and combines the work of two papers: Phase-Enhanced 3D Snapshot ISAR Imaging and Interferometric SAR (Joseph Mayhan) and Shape and Motion Reconstruction from 3D-to-1D Orthographically Projected Data via Object-Image Relations (Matthew Ferrara). The second paper is a modification to work first presented in Derivation and Estimation of Euclidean Invariants of Far Field Range Data (Mark Stuff). The phase-enhanced 3D snapshot imaging algorithm solves for shape using known motion and uncorrelated range, range-rate, and phase data. The second method uses an SVD to jointly solve for shape and motion using correlated range data. Key features from each of these methods are incorporated in to the novel hybrid phase-enhanced 3D SVD method.
dc.description.abstractTwo algorithms are presented that eliminate the need for scatterer correlation so that the hybrid method can be used on uncorrelated radar data. One algorithm, applicable to targets with a small number of scatterers, methodically determines the optimal correlation for a set of data using continuity and slope conditions. This algorithm can be used in the presence of noise and phase ambiguities. The other algorithm, applicable to targets with a large number of scatterers, iterates on an optimally chosen set of possible correlations and chooses the ``best" one based on a condition on the resulting singular values. This algorithm can also be used in the presence of noise and phase ambiguities. A mathematical proof is presented to show that a matrix of radar observables data is uncorrelated if and only if it has more than three nonzero singular values. This proof justifies the use of the iterative algorithm.
dc.language.isoENG
dc.publisherRensselaer Polytechnic Institute, Troy, NY
dc.relation.ispartofRensselaer Theses and Dissertations Online Collection
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectMathematics
dc.titleJointly estimating 3D target shape and motion from radar data
dc.typeElectronic thesis
dc.typeThesis
dc.digitool.pid166957
dc.digitool.pid166958
dc.digitool.pid166959
dc.rights.holderThis electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.
dc.description.degreePhD
dc.relation.departmentDept. of Mathematical Sciences


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC-ND. Users may download and share copies with attribution in accordance with a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. No commercial use or derivatives are permitted without the explicit approval of the author.
Except where otherwise noted, this item's license is described as CC BY-NC-ND. Users may download and share copies with attribution in accordance with a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. No commercial use or derivatives are permitted without the explicit approval of the author.