Show simple item record

dc.rights.licenseUsers may download and share copies with attribution in accordance with a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. No commercial use or derivatives are permitted without the explicit approval of the author.
dc.contributorSamuel, Johnson
dc.contributorMishra, Sandipan
dc.contributorWalczyk, Daniel F.
dc.contributor.authorPopell, George Colin
dc.date.accessioned2021-11-03T08:01:40Z
dc.date.available2021-11-03T08:01:40Z
dc.date.created2014-01-16T11:15:44Z
dc.date.issued2013-08
dc.identifier.urihttps://hdl.handle.net/20.500.13015/941
dc.descriptionAugust 2013
dc.descriptionSchool of Engineering
dc.description.abstractNear-field electrohydrodynamic jet (E-jet) printing has recently gained significant interest within the manufacturing research community because of its ability to produce micro/sub-micron-scale droplets using a wide variety of inks and substrates. However, the process currently operates in open-loop and as a result suffers from unpredictable printing quality. The use of physics-based, control-oriented process models is expected to enable closed-loop control of this printing technique. The objective of this research is to perform a fundamental study of the substrate-side droplet shape-evolution in near-field E-jet printing and to develop a physics-based model of the same that links input parameters such as voltage magnitude and ink properties to the height and diameter of the printed droplet. In order to achieve this objective, a synchronized high-speed imaging and substrate-side current-detection system was used implemented to enable a correlation between the droplet shape parameters and the measured current signal. The experimental data reveals characteristic process signatures and droplet spreading regimes.
dc.description.abstractThe results of these studies are then used as the basis for a model that predicts the droplet diameter and height using the measured current signal as the input. A unique scaling factor based on the measured current signal is used in this model instead of relying on empirical scaling laws found in literature. For each of the three inks tested in this study, the average absolute error in the model predictions is under 4.6% for diameter predictions and under 10.6% for height predictions of the steady-state droplet. While printing under non-conducive ambient conditions of low humidity and high temperatures, the use of the environmental correction factor in the model is seen to result in average absolute errors of 10.35% and 12.5% for diameter and height predictions.
dc.language.isoENG
dc.publisherRensselaer Polytechnic Institute, Troy, NY
dc.relation.ispartofRensselaer Theses and Dissertations Online Collection
dc.subjectMechanical engineering
dc.titleModeling micro-droplet formation in near-field electrohydrodynamic jet printing
dc.typeElectronic thesis
dc.typeThesis
dc.digitool.pid169993
dc.digitool.pid169994
dc.digitool.pid169995
dc.rights.holderThis electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.
dc.description.degreeMS
dc.relation.departmentDept. of Mechanical, Aerospace, and Nuclear Engineering


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record