Author
Saulnier, Kelsey
Other Contributors
Bevilacqua, Riccardo; Julius, Anak Agung; Sanderson, A. C. (Arthur C.);
Date Issued
2013-08
Subject
Computer and systems engineering
Degree
MS;
Terms of Use
This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.;
Abstract
The development of novel techniques for the guidance, navigation, and control of spacecraft is a necessary step in the effort to create new autonomous spacecraft. The costs of on-orbit testing can be mitigated by the use of on-the-ground simulators which allow for hardware-in-the-loop debugging. Air-bearing spacecraft simulators have been used widely for this purpose. This work presents the first full six degree of freedom simulator which relies solely on air bearing reduced friction motion to achieve all six degrees of freedom, thus making simulations better represent the final system than can be expected from systems with limited degrees of freedom or powered stages. The system utilizes ON-OFF thrusters and is designed for testing guidance, navigation, and control algorithms for small scale satellites which have been becoming increasingly popular in recent years. This system is used to validate a nonlinear six degrees of freedom control strategy for specifically for ON-OFF thrusters which is based in Lyapunov theory and designed for systems, such as small scale satellites, with limited computational power.;
Description
August 2013; School of Engineering
Department
Dept. of Electrical, Computer, and Systems Engineering;
Publisher
Rensselaer Polytechnic Institute, Troy, NY
Relationships
Rensselaer Theses and Dissertations Online Collection;
Access
Users may download and share copies with attribution in accordance with a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. No commercial use or derivatives are permitted without the explicit approval of the author.;