• Login
    View Item 
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Online (Complete)
    • View Item
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Online (Complete)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ranking models to identify influential actors in large-scale social networks

    Author
    Lu, Xiaohui
    View/Open
    170136_Lu_rpi_0185E_10125.pdf (2.159Mb)
    Other Contributors
    Adali, Sibel; Goldberg, Mark; Kuruzovich, Jason N.; Magdon-Ismail, Malik;
    Date Issued
    2013-08
    Subject
    Computer science
    Degree
    PhD;
    Terms of Use
    This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.;
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/979
    Abstract
    In this thesis, we develop a framework to identify prominent actors from several perspectives. We first investigate the importance of actors in actor-actor networks. In these networks, centrality algorithms are good candidates. However, these centrality measures suffer from several issues - they either look solely at the structure of the network disregarding issues like attention nodes have to give to others or make a shortest path interaction assumption that might be impractical in large networks. To address these issues, we develop two algorithms "Attentive Betweenness Centrality (ABC)" and "Attentive Closeness Centrality (ACC)". These two algorithms take multiple paths of information flow and attention into consideration while computing importance scores of actors. ABC reduces anomalous behaviors of classical betweenness centrality while captures its essence. ACC, on the other hand, targets the improvement of closeness. These two algorithms have high performance in identifying prominent actors.; The aforementioned algorithms are very different in methodology, however, they have one point in common - ranking actors globally. In the third model, we look at individual centrality in one's own community and the community centrality. We develop methods to compute prominence of individuals as a function of their position in their own communities and the importance of their communities in the network. We illustrate with many real life social networks that the algorithms in this thesis improve on the state of the art in computing prominence by incorporating different network levels of information.; One of the primary tasks of social network analysis is the identification of the "important" or "prominent" actors in a social network. Centrality measures based on one's structural position, such as betweenness, closeness and degree centrality, are widely applied to various social networks for this purpose. However, these measures often suffer from prohibitive computational cost, non-intuitive assumptions, and limited applications. Meanwhile, with the explosive emergence and the widespread accessibility of online social network sites, large scale networks with multiple types of entities, such as author-publication, actor-movie, employee-email networks, are ubiquitous and readily available. However, due to size and multiple modes, centrality measures are helpless in such networks.; In many cases, algorithms for pure actor-actor networks are not able to take advantage of abundant information hidden in multi-mode (heterogeneous) networks. We develop an algorithm to analyze such heterogeneous networks - "iterative Hyperedge Ranking (iHypR)". As the name implies, the algorithm iterates from one type of objects to another, and importance of objects flow through these different types of edges. This algorithm is based on empirical observations - prominent actors are likely to collaborate with prominent others; good collaboration product tends to be in good groups.;
    Description
    August 2013; School of Science
    Department
    Dept. of Computer Science;
    Publisher
    Rensselaer Polytechnic Institute, Troy, NY
    Relationships
    Rensselaer Theses and Dissertations Online Collection;
    Access
    Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.;
    Collections
    • RPI Theses Online (Complete)

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV