Ischemic stroke disrupts the endothelial glycocalyx through activation of proHPSE via acrolein exposure

Thumbnail Image
Authors
Ko, Kenta
Suzuki, Takehiro
Ishikawa, Ryota
Hattori, Natsuko
Ito, Risako
Umehara, Kenta
Furihata, Tomomi
Dohmae, Naoshi
Linhardt, Robert J.
Igarashi, Kazuei
Issue Date
2020-12-25
Type
Article
Language
ENG
Keywords
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Research Projects
Organizational Units
Journal Issue
Alternative Title
Abstract
Infiltration of peripheral immune cells after blood-brain barrier dysfunction causes severe inflammation after a stroke. Although the endothelial glycocalyx, a network of membrane-bound glycoproteins and proteoglycans that covers the lumen of endothelial cells, functions as a barrier to circulating cells, the relationship between stroke severity and glycocalyx dysfunction remains unclear. In this study, glycosaminoglycans, a component of the endothelial glycocalyx, were studied in the context of ischemic stroke using a photochemically induced thrombosis mouse model. Decreased levels of heparan sulfate and chondroitin sulfate and increased activity of hyaluronidase 1 and heparanase (HPSE) were observed in ischemic brain tissues. HPSE expression in cerebral vessels increased after stroke onset and infarct volume greatly decreased after co-administration of N-acetylcysteine + glycosaminoglycan oligosaccharides as compared with N-acetylcysteine administration alone. These results suggest that the endothelial glycocalyx was injured after the onset of stroke. Interestingly, scission activity of proHPSE produced by immortalized endothelial cells and HEK293 cells transfected with hHPSE1 cDNA were activated by acrolein (ACR) exposure. We identified the ACR-modified amino acid residues of proHPSE using nano LC–MS/MS, suggesting that ACR modification of Lys139 (6-kDa linker), Lys107, and Lys161, located in the immediate vicinity of the 6-kDa linker, at least in part is attributed to the activation of proHPSE. Because proHPSE, but not HPSE, localizes outside cells by binding with heparan sulfate proteoglycans, ACR-modified proHPSE represents a promising target to protect the endothelial glycocalyx.
Description
Journal of Biological Chemistry, 295, 18614-18624
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Full Citation
Ischemic stroke disrupts the endothelial glycocalyx through activation of proHPSE via acrolein exposure, K. Ko, T. Suzuki, R. Ishikawa, N. Hattori, K. Umehara, R. Ito, T. Furihata, N. Dohmae, R. J. Linhardt, K. Igarashi, T. Toida, K. Higashi, Journal of Biological Chemistry, 295, 18614-18624, 2020.
Publisher
The American Society for Biochemistry and Molecular Biology (ASBMB) and Elsevier
Journal
Volume
Issue
PubMed ID
DOI
ISSN
1083351X
219258
EISSN