Synthetic heparan sulfate standards and machine learning facilitate the development of solid-state nanopore analysis

No Thumbnail Available
Authors
Xia, Ke
Hagan, James T.
Fu, Li
Sheetz, Brian S.
Bhattacharya, Somdatta
Zhang, Fuming
Dwyer, Jason R.
Linhardt, Robert J.
Issue Date
2021-03-16
Type
Article
Language
ENG
Keywords
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Research Projects
Organizational Units
Journal Issue
Alternative Title
Abstract
Synthetic heparan sulfate standards and machine learning facilitate the development of solid-state nanopore analysis
Description
Proceedings of the National Academy of Sciences (USA), 118, e2022806118
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Full Citation
Synthetic heparan sulfate standards and machine learning facilitate the development of solid-state nanopore analysis, K. Xia, J. T. Hagan, L. Fu, B. S. Sheetz, S. Bhattacharya, F. Zhang, J. R. Dwyer, R. J. Linhardt, Proceedings of the National Academy of Sciences (USA), 118, e2022806118, 2021.
Publisher
Terms of Use
Journal
Volume
Issue
PubMed ID
DOI
ISSN
10916490
278424
EISSN