Small and large signal impedance modeling for stability analysis of grid-connected voltage source converters

Shah, Shahil
Thumbnail Image
Other Contributors
Parsa, Leila
Parsa, Leila
Abouzeid, Alhussein A.
Chow, J. H. (Joe H.), 1951-
Julius, Anak Agung
Kapila, Ashwani K.
Issue Date
Electrical engineering
Terms of Use
This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.
Full Citation
This thesis presents small and large signal impedance modeling of grid-connected single and three phase voltage source converters (VSC) to enable the analysis of resonance conditions involving multiple frequency components, and both the ac and dc power systems at the VSC terminals. A modular impedance modeling approach is proposed by defining the VSC impedance as transfer matrix, which captures the frequency cross-coupling effects and also the coupling between the ac and dc power systems interfaced by the VSC. Ac and dc impedance models are developed for a VSC including the reflection of the network on the other side of the VSC. Signal-flow graphs for linear time-periodic (LTP) systems are proposed to streamline and visually describe the linearization of grid-connected converters including the frequency cross-coupling effects. Relationships between the impedance modeling in dq, sequence, and phasor domains are also developed. The phasor-domain impedance formulation links the impedance methods with the phasor-based state-space modeling approach generally used for bulk power systems. A large-signal impedance based method is developed for predicting the amplitude or severity of resonance under different grid conditions. The small-signal harmonic linearization method is extended for the large-signal impedance modeling of grid-connected converters. It is shown that the large-signal impedance of a converter is predominantly shaped by hard nonlinearities in the converter control system such as PWM saturation and limiters.
May 2018
School of Engineering
Dept. of Electrical, Computer, and Systems Engineering
Rensselaer Polytechnic Institute, Troy, NY
Rensselaer Theses and Dissertations Online Collection
Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.