Enzymatic Synthesis of Glycosaminoglycan Heparin

Loading...
Thumbnail Image
Authors
Linhardt, Robert J.
Dordick, Jonathan S.
Deangelis, Paul L.
Liu, Jian
Issue Date
2007-07-01
Type
Article
Language
ENG
Keywords
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Research Projects
Organizational Units
Journal Issue
Alternative Title
Abstract
Heparin and its low molecular weight heparin derivatives, widely used as clinical anticoagulants, are acidic polysaccharide members of a family of biomacromolecules called glycosaminoglycans (GAGs). Heparin and the related heparan sulfate are biosynthesized in the Golgi apparatus of eukaryotic cells. Heparin is a polycomponent drug that currently is prepared for clinical use by extraction from animal tissues. A heparin pentasaccharide, fondaparinux, has also been prepared through chemical synthesis for use as a homogenous anticoagulant drug. Recent enabling technologies suggest that it may now be possible to synthesize heparin and its derivatives enzymatically. Moreover, new technologies including advances in synthetic carbohydrate synthesis, enzyme-based GAG synthesis, micro- and nano-display of GAGs, rapid on-line structural analysis, and microarray/microfluidic technologies might be applied to the enzymatic synthesis of heparins with defined structures and exhibiting selected activities. The advent of these new technologies also makes it possible to consider the construction of an artificial Golgi to increase our understanding of the cellular control of GAG biosyntheses in this organelle.
Description
Seminars in Thrombosis and Hemostasis, 33, 453-465
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Full Citation
Enzymatic Synthesis of Glycosaminoglycan Heparin, R. J. Linhardt, J. S. Dordick, P. L. DeAngelis, J. Liu, Seminars in Thrombosis and Hemostasis, 33, 453-465, 2007.
Publisher
Thieme Medical Publishers
Terms of Use
Journal
Volume
Issue
PubMed ID
DOI
ISSN
946176
EISSN