Heparin mapping using heparin lyases and the generation of a novel low molecular weight heparin

Authors
Xiao, Zhongping
Tappen, Britney R.
Ly, Mellisa
Zhao, Wenjing
Canova, Lauren P.
Guan, Huashi
Linhardt, Robert J.
ORCID
https://orcid.org/0000-0003-2219-5833
Loading...
Thumbnail Image
Other Contributors
Issue Date
2011-01-27
Keywords
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Degree
Terms of Use
In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/
Full Citation
Heparin mapping using heparin lyases and the generation of a novel low molecular weight heparin, Z. Xiao, B. R. Tappen, M. Ly, W. Zhao, L. P. Canova, H. Guan, R. J. Linhardt, Journal of Medicinal Chemistry, 54, 603–610, 2011. 2011.
Abstract
Seven pharmaceutical heparins were investigated by oligosaccharide mapping by digestion with heparin lyase 1, 2, or 3, followed by high performance liquid chromatography analysis. The structure of one of the prepared mapping standards, ΔUA-Gal-Gal-Xyl-O-CH(2)CONHCH(2)COOH (where ΔUA is 4-deoxy-α-l-threo-hex-4-eno-pyranosyluronic acid, Gal is β-d-galactpyranose, and Xyl is β-d-xylopyranose) released from the linkage region using either heparin lyase 2 or heparin lyase 3 digestion, is reported for the first time. A size-dependent susceptibility of site cleaved by heparin lyase 3 was also observed. Heparin lyase 3 acts on the undersulfated domains of the heparin chain and does not cleave the linkages within heparin's antithrombin III binding site. Thus, a novel low molecular weight heparin (LMWH) is afforded on heparin lyase 3 digestion of heparin due to this unique substrate specificity, which has anticoagulant activity comparable to that of currently available LMWH.
Description
Journal of Medicinal Chemistry, 54, 603–610
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Department
The Linhardt Research Labs.
The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)
Publisher
American Chemical Society (ACS)
Relationships
The Linhardt Research Labs Online Collection
Rensselaer Polytechnic Institute, Troy, NY
Journal of Medicinal Chemistry
https://harc.rpi.edu/
Access
A full text version is available in DSpace@RPI