A purification process for heparin and precursor polysaccharides using the pH responsive behavior of chitosan

Authors
Bhaskar, Ujjwal
Hickey, Anne M.
Li, Guoyun
Mundra, Ruchir V.
Zhang, Fuming
Fu, Li
Cai, Chao
Ou, Zhimin
Dordick, Jonathan S.
Linhardt, Robert J.
ORCID
https://orcid.org/0000-0003-2219-5833
Loading...
Thumbnail Image
Other Contributors
Issue Date
2015-09-01
Keywords
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Degree
Terms of Use
In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/
Full Citation
A purification process for heparin and precursor polysaccharides using the pH responsive behavior of chitosan, U. Bhaskar, A.M. Hickey, G. Li, C. Cai, L. Fu, Z. Ou, R. V. Mundra, F. Zhang, J. S. Dordick, R. J. Linhardt, Biotechnology Progress, 31, 1348–1359, 2015.
Abstract
The contamination crisis of 2008 has brought to light several risks associated with use of animal tissue derived heparin. Because the total chemical synthesis of heparin is not feasible, a bioengineered approach has been proposed, relying on recombinant enzymes derived from the heparin/HS biosynthetic pathway and Escherichia coli K5 capsular polysaccharide. Intensive process engineering efforts are required to achieve a cost-competitive process for bioengineered heparin compared to commercially available porcine heparins. Towards this goal, we have used 96-well plate based screening for development of a chitosan-based purification process for heparin and precursor polysaccharides. The unique pH responsive behavior of chitosan enables simplified capture of target heparin or related polysaccharides, under low pH and complex solution conditions, followed by elution under mildly basic conditions. The use of mild, basic recovery conditions are compatible with the chemical Ndeacetylation/N-sulfonation step used in the bioengineered heparin process. Selective precipitation of glycosaminoglycans (GAGs) leads to significant removal of process related impurities such as proteins, DNA and endotoxins. Use of highly sensitive liquid chromatographymass spectrometry and nuclear magnetic resonance analytical techniques reveal a minimum impact of chitosan-based purification on heparin product composition.
Description
Biotechnology Progress, 31, 1348–1359
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Department
The Linhardt Research Labs.
The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)
Publisher
Wiley
Relationships
The Linhardt Research Labs Online Collection
Rensselaer Polytechnic Institute, Troy, NY
Biotechnology Progress
https://harc.rpi.edu/
Access
A full text version is available in DSpace@RPI