High-dimensional data analysis by exploiting low-dimensional models with applications in synchrophasor data analysis in power systems

Authors
Gao, Pengzhi
ORCID
Loading...
Thumbnail Image
Other Contributors
Wang, Meng
Chow, J. H. (Joe H.), 1951-
Yazici, Birsen
Mitchell, John E.
Issue Date
2017-12
Keywords
Electrical engineering
Degree
PhD
Terms of Use
This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.
Full Citation
Abstract
We also consider recovering PMU data from quantized and partially corrupted measurements. The data recovery is achieved through solving a constrained maximum likelihood estimation problem that exploits the low-rank property of the actual measurements. The recovery error is proven to be order-optimal and decays in the same order as that of the state-of-the-art method when no corruption exists. The data accuracy is thus maintained while the data privacy is enhanced. A new application of this method for data privacy in power systems is discussed. Experiments on synthetic data and real synchrophasor data in power systems demonstrate the effectiveness of our method.
Description
December 2017
School of Engineering
Department
Dept. of Electrical, Computer, and Systems Engineering
Publisher
Rensselaer Polytechnic Institute, Troy, NY
Relationships
Rensselaer Theses and Dissertations Online Collection
Access
Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.