Examination of charge transport in smart matrix light-harvesting arrays for use in molecular-based solar cells

Loading...
Thumbnail Image
Authors
Civic, Marissa R.
Issue Date
2016-08
Type
Electronic thesis
Thesis
Language
ENG
Keywords
Inorganic chemistry
Research Projects
Organizational Units
Journal Issue
Alternative Title
Abstract
Films assembled employing this layer-by-layer (LbL) technique have been shown to possess a novel property in which they can effectively be used as a passivation layer when immobilized on an electrode. Due to the insulating nature of these films, when incorporated into a typical DSC, undesirable current flow in which a redox shuttle recombines with the underlying electrode can be physically blocked, while still allowing desirable current flow mediated by the conductive porphyrin film upon reaching its electrochemical potential. Cyclic voltammetry was applied to qualitatively examine surface rectification of our films towards five outer-sphere redox probes, while interfacial rates were measured using forced-convection hydrodynamic flow electrochemical methods with a wall-jet instrumental set-up we built specifically for this purpose. Using wall-jet electrochemical methods, we were able to determine a quantitative interfacial electron transfer rate for these five different outer-sphere redox probes, with the goal of ultimately modeling photocurrent enhancement in a DSC.
Description
August 2016
School of Science
Full Citation
Publisher
Rensselaer Polytechnic Institute, Troy, NY
Terms of Use
Journal
Volume
Issue
PubMed ID
DOI
ISSN
EISSN