Effect of Genomic Integration Location on Heterologous Protein Expression and Metabolic Engineering in E. coli

No Thumbnail Available
Authors
Englaender, Jacob A.
Jones, J. Andrew
Cress, Brady F.
Kuhlman, Thomas E.
Linhardt, Robert J.
Koffas, Mattheos A.G.
Issue Date
2017-04-21
Type
Article
Language
ENG
Keywords
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Research Projects
Organizational Units
Journal Issue
Alternative Title
Abstract
Chromosomal integration offers a selection-free alternative to DNA plasmids for expression of foreign proteins and metabolic pathways. Episomal plasmid DNA is convenient but has drawbacks including increased metabolic burden and the requirement for selection in the form of antibiotics. E. coli has long been used for the expression of foreign proteins and for the production of valuable metabolites by expression of complete metabolic pathways. The gene encoding the fluorescent reporter protein mCherry was integrated into four genomic loci on the E. coli chromosome to measure protein expression at each site. Expression levels ranged from 25% to 500% compared to the gene expressed on a high-copy plasmid. Modular expression of DNA is one of the most commonly used methods for optimizing metabolite production by metabolic engineering. By combining a recently developed method for integration of large synthetic DNA constructs into the genome, we were able to integrate two foreign pathways into the same four genomic loci. We have demonstrated that only one of the genomic loci resulted in the production of violacein, and that all four loci produced trans-cinnamic acid from the TAL pathway.
Description
ACS Synthetic Biology, 6, 710−720
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Full Citation
Effect of Genomic Integration Location on Heterologous Protein Expression and Metabolic Engineering in E. coli. J. Englaender, A. J. Jones, B. Cress, T. Kuhlman, R. J. Linhardt, M.A.G. Koffas, ACS Synthetic Biology, 6, 710−720, 2017.
Publisher
Terms of Use
Journal
Volume
Issue
PubMed ID
DOI
ISSN
21615063
EISSN