Narrow line-width phosphors for phosphor-converted white light emitting diodes

Loading...
Thumbnail Image
Authors
Khanna, Aloka
Issue Date
2014-12
Type
Electronic thesis
Thesis
Language
ENG
Keywords
Electrical engineering
Research Projects
Organizational Units
Journal Issue
Alternative Title
Abstract
In order to solve this problem, an efficient red phosphor with considerably narrow full width of half maxima (~5-10 nm) and emission in the 600-650 nm wavelength range is required. The narrow spectral line-width can be achieved by introducing trivalent lanthanide ions like Eu3+, Pr3+ and Sm3+ (λpeak- 615 nm, 650 nm, 655 nm) in oxide host lattices although the high energy gaps of these hosts makes these phosphors unsuitable for excitation with near-UV/Blue (380-470 nm) LED sources. Therefore, the goal of this project is two-fold- to develop new material systems which can serve as potential hosts for trivalent lanthanide ions like Eu3+, Pr3+ and Sm3+ (λpeak- 615 nm, 650 nm, 655 nm) with strong excitation bands in the near-UV/blue wavelength region (380-470 nm) and improve the efficiency of the known oxide phosphors doped with trivalent lanthanide ions and the novel phosphors via crystal growth processes. Moreover, phosphors in the green-yellow wavelength region with a narrow emission line-width have the potential of improving the luminous efficacy of the phosphor-converted LEDs as the human eye sensitivity curve peaks at 555 nm. Thus, in parallel with the narrow line-width red phosphor research, new compositions doped with Tb3+ (550 nm), Dy3+ (575 nm), etc. are being explored with strong excitation bands in near-UV/blue region (380-470 nm).
Description
December 2014
School of Engineering
Full Citation
Publisher
Rensselaer Polytechnic Institute, Troy, NY
Terms of Use
Journal
Volume
Issue
PubMed ID
DOI
ISSN
EISSN