Structure and bioactivity of a polysaccharide containing uronic acid from Polyporus umbellatus sclerotia

Authors
He, Pengfei
Zhang, Anqiang
Zhang, Fuming
Linhardt, Robert J.
Sun, Peilong
ORCID
https://orcid.org/0000-0003-2219-5833
No Thumbnail Available
Other Contributors
Issue Date
2016-11-05
Keywords
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Degree
Terms of Use
In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/
Full Citation
Structure and bioactivity of a polysaccharide containing uronic acid from Polyporus umbellatus sclerotia, P. He, A. Zhang, F. Zhang, R. J. Linhardt, P. Sun, Carbohydrate Polymers,152, 222–230, 2016.
Abstract
Polyporus umbellatus is a medicinal fungus, has been used in traditional Chinese medicine for thousands years for treatment of edema, scanty urine, vaginal discharge, jaundice and diarrhea. The structure of a soluble polysaccharide (named PUP80S1), purified from the sclerotia of Polyporus umbellatus was elucidated by gas chromatography (GC), GC–mass spectrometry and nuclear magnetic resonance spectroscopy. PUP80S1 is a branched polysaccharide containing approximately 8.5% uronic acid and having an average molecular weight of 8.8 kDa. Atomic force microscopy of PUP80S1 reveals a globular chain conformation in water. Antioxidant tests, Oxygen radical absorption capacity and 2,2-diphenyl-1-picrylhydrazyl radical scavenging assays indicate that PUP80S1 possesses significant antioxidant activity. But the related polysaccharide, PUP60S2, which contains more uronic acid residues and a higher level of branching, shows better antioxidant activity. These results suggest that structure features of polysaccharides play an important role in their physiological functions.
Description
Carbohydrate Polymers,152, 222–230
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Department
The Linhardt Research Labs.
The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)
Publisher
Relationships
The Linhardt Research Labs Online Collection
Rensselaer Polytechnic Institute, Troy, NY
Carbohydrate Polymers
https://harc.rpi.edu/
Access
https://login.libproxy.rpi.edu/login?url=https://doi.org/10.1016/j.carbpol.2016.07.010