Characterizing Carbon Mineralogy And Formational Environments Through Deep Time With Advanced Analytics And Visualization

Authors
Morrison, SM
Eleish, Ahmed
Prabhu, Anirudh
Narkar, Shweta
Pan, Feifei
Huang, Fang
Fox, Peter
Zhang, S
Howell, S
Ma, Xiaogang
ORCID
No Thumbnail Available
Other Contributors
Issue Date
2019-09-25
Keywords
Degree
Terms of Use
Full Citation
Morrison SM, Eleish A, Prabhu A, Narkar S, Pan F, Huang F, Fox P, Zhang S, Howell S, Ma X, Ralph J. Characterizing Carbon Mineralogy And Formational Environments Through Deep Time With Advanced Analytics And Visualization. In GSA Annual Meeting in Phoenix, Arizona, USA-2019 Sep 25. GSA.
Abstract
Recent years have seen a dramatic increase in the volume of mineralogical and geochemical data available for study, both of Earth and planetary materials. These expanding data resources have created an opportunity to characterize changes in Earth’s mineralogy through deep time and to relate these findings to the geologic and biologic evolution of our planet [1-2] and thereby make comparisons to other planetary bodies, including Mars the Moon, and Vesta. Using databases such as the RRUFF Project, the Mineral Evolution Database (MED), mindat, EarthChem, as well as data from martian surface missions, HED meteorites, and Apollo lunar samples, we explore the spatial and temporal distribution of minerals while considering the multidimensional relationships between composition, oxidation state, structural complexity [3], and paragenetic mode. These studies, driven by advanced analytical and visualization techniques such as mineral ecology [4-5], network analysis [6], and affinity analysis, allow us to begin tackling big questions in Earth, planetary, and biosciences. These analytical approaches facilitate integration across disciplines and allow us to explore ideas that one field alone cannot fully characterize, such as how the geochemical makeup of our planet affected the emergence and evolution of life, and, likewise, how life influenced the chemical composition and geological processes throughout Earth history. Given that the spatial and temporal distribution of minerals on Earth was heavily influenced by life, we can also explore the possibility that Earth’s mineral diversity and distribution is a biosignature that can be used for future planetary evaluation and exploration.
Description
Department
Publisher
GSA
Relationships
Access