Photosynthetic energy storage for the built environment: modeling energy generation and storage for net zero building analysis

Lichter-Marck, Eli Morris
Thumbnail Image
Other Contributors
Dyson, Anna H.
Diniz, Nancy
Xiang, Ning
Issue Date
Architectural sciences
Terms of Use
This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.
Full Citation
There is a growing need to address the energy demand of the building sector with non-polluting, renewable energy sources. The Net Zero Energy Building (NZEB) mandate seeks to reduce the impact of building sector energy consumption by encouraging on-site energy generation as a way to offset building loads. However, current approaches to designing on-site generation fail to adequately match the fluctuating load schedules of the built environment. As a result, buildings produce highly variable and often-unpredictable energy import/export patterns that create stress on energy grids and increase building dependence on primary energy resources. This research investigates the potential of integrating emerging photo-electrochemical (PEC) technologies into on-site generation systems as a way to enable buildings to take a more active role in collecting, storing and deploying energy resources according to their own demand schedules. These artificially photosynthetic systems have the potential to significantly reduce variability in hour-to-hour and day-to-day building loads by introducing high-capacity solar-hydrogen into the built environment context. The Building Integrated Artificial Photosynthesis (BIAP) simulation framework presented here tests the impact of hydrogen based energy storage on NZEB performance metrics with the goal of developing a methodology that makes on-site energy generation more effective at alleviating excessive energy consumption in the building sector. In addition, as a design performance framework, the BIAP framework helps guide how material selection and scale up of device design might tie photo-electrochemical devices into parallel building systems to take full advantage of the potential outputs of photosynthetic building systems.
August 2015
School of Architecture
School of Architecture
Rensselaer Polytechnic Institute, Troy, NY
Rensselaer Theses and Dissertations Online Collection
Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.