A passivity based approach to building temperature control

Authors
Mukherjee, Sumit
ORCID
Loading...
Thumbnail Image
Other Contributors
Mishra, Sandipan
Wen, John T.
Julius, Anak Agung
Issue Date
2013-05
Keywords
Electrical engineering
Degree
MS
Terms of Use
This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.
Full Citation
Abstract
Modeling and control of building HVAC systems is recently gaining a lot of importance, due to the need for energy conservation. Building HVAC systems consume a large portion of the energy consumption in buildings. Modeling the building thermal system itself is quite challenging because it is very cumbersome to accurately the model the nonlinear time varying system, especially for large buildings. Simplified lumped heat transfer models based on thermal resistance and capacitance are most commonly used to analyze the system dynamics and design control strategies. This enables the resulting thermal network, including the zones, walls, and ambient environment to be represented as an undirected graph. The thermal capacitances are the nodes in the graph, connected by thermal resistances as links. We assume the temperature measurements and temperature control elements (heating and cooling) are collocated. We show that the resulting input/output system is strictly passive and that any passive output feedback controller may be used to improve the transient and steady state performance without affecting the closed loop stability. The storage functions associated with passive systems may be used to construct a Lyapunov function, to demonstrate closed loop stability and motivate the construction of an adaptive feedforward control to compensate for the variation of the ambient temperature and zone heat loads (due to changing occupancy). The approach lends itself naturally to an inner-outer loop control architecture where the inner loop is designed for stability, while the outer loop balances between temperature specification and power consumption. The performance of the proposed control strategy is verified with the help of a simulation example and the modeling methodology has been tested on data from a real testbed.
Description
May 2013
School of Engineering
Department
Dept. of Electrical, Computer, and Systems Engineering
Publisher
Rensselaer Polytechnic Institute, Troy, NY
Relationships
Rensselaer Theses and Dissertations Online Collection
Access
Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.