An analytical and numerical study on the fracture toughness of fibrous network materials

Jin, Shengguang
Thumbnail Image
Other Contributors
Samuel, Johnson, J.S.
Blanchet, Thierry, T.B.
Picu, Catalin, C.P.
Issue Date
Mechanical engineering
Terms of Use
This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute (RPI), Troy, NY. Copyright of original work retained by author.
Full Citation
Many materials have a network of fibers as their main structural component and are referred to as network materials. Their strength and toughness are important in both engineering and biology. In this work we consider stochastic model fiber networks without pre-existing cracks and study their rupture mechanism. These materials soften as the crosslinks or fibers fail and exhibit either brittle failure immediately after the peak stress, or a more gradual, ductile rupture in the post peak regime. We observe that ductile failure takes place at constant energy release rate defined in the absence of pre-existing cracks as the strain derivative of the specific energy released. The network parameters controlling the energy release rate are identified and discussed in relation to the Lake-Thomas theory which applies to crack growth situations. We also observe a ductile to brittle failure transition as the network becomes more affine and relate the embrittlement to the reduction of mechanical heterogeneity of the network. Further, we confirm previous reports that the network strength scales linearly with the bond strength and with the crosslink density. The present results extend the Lake-Thomas theory to networks without pre-existing cracks which fail by the gradual accumulation of distributed damage and contribute to the development of a physical picture of failure in stochastic network materials.
School of Engineering
Dept. of Mechanical, Aerospace, and Nuclear Engineering
Rensselaer Polytechnic Institute, Troy, NY
Rensselaer Theses and Dissertations Online Collection
Users may download and share copies with attribution in accordance with a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 license. No commercial use or derivatives are permitted without the explicit approval of the author.