The effect of coating on heat generation properties of iron oxide nanoparticles
Loading...
Authors
Yuan, Yuan
Issue Date
2013-08
Type
Electronic thesis
Thesis
Thesis
Language
ENG
Keywords
Mechanical engineering
Alternative Title
Abstract
Magnetic nanoparticles have attracted more and more attention for their potential application as heating agents in cancer hyperthermia. The effectiveness of cancer hyperthermia can be increased by using particles that have a higher heat generation rate, quantified by specific absorption rate (SAR), at a smaller applied field. In order to optimize the functionality of nanoparticles as heating agents, it is essential to have a comprehensive understanding of factors that may influence SAR including coating and aggregation. In all biomedical applications, the magnetic particles are coated with surfactants and polymers to enhance biocompatibility, prevent agglomeration and add functionality. Coatings may profoundly influence particles' clustering behavior and magnetic properties. Yet its effect on the heat generation rate of the nanoparticles has been scarcely investigated. In this context, a systematic investigation was carried out in this dissertation in order to understand the impact of the surface coating of magnetic nanoparticles on their heat generation rate. The study also includes investigation of normal nerve cell viability in presence of biofunctionalized magnetic nanoparticles with and without exposure to magnetic heating.
Description
August 2013
School of Engineering
School of Engineering
Full Citation
Publisher
Rensselaer Polytechnic Institute, Troy, NY