Resolution of Structurally Similar Glycoproteins by Affinity-BasedReversed Micellar Extraction and Separation

Authors
Choe, J.H.
VanderNoot, V.A.
Linhardt, Robert J.
Dordick, J.S.
ORCID
https://orcid.org/0000-0003-2219-5833
No Thumbnail Available
Other Contributors
Issue Date
1998
Keywords
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Degree
Terms of Use
In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/
Full Citation
Resolution of Structurally Similar Glycoproteins by Affinity-BasedReversed Micellar Extraction and Separation, J.-H. Choe, V.A. VanderNoot,R.J. Linhardt, J.S. Dordick, AIChE Journal, 44, 2542-2548, 1998.
Abstract
Affinity-based reversed micellar extraction and separation (ARMES) has proven effective in separating glycoproteins from nonglycosylated proteins from natural sources. The ability of ARMES to resolve closely related glycoproteins is of paramount importance if ARMES is to be used in glycoform resolution. It is demonstrated that ARMES can resolve the structurally similar soybean peroxidase (SBP; MW 37 kDa, pI 4.1) and αt-acid glycoprotein (AGP; MW 43 kDa, pI 3.7), both of which have affinity for Concanavalin A (Con A) (the affinity ligand). SBP was almost exclusively extracted at pH 8 and above, with a separation factor greater than 50 (resolution ∼ 20), far better than was possible using Con A affinity chromatography (R ∼ 0.25, separation factor ∼ 2). Model calculations suggest that differences in affinity measured by an equilibrium-building assay cannot account for the favorable extraction of SBP over AGP at higher pH. Hydrophobic interactions and/or charge shielding appear to affect partitioning of the lectin - glycoprotein complexes and add greatly to the selectivity of extraction in ARMES, especially at higher pH values.
Description
AIChE Journal, 44, 2542-2548
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Department
The Linhardt Research Labs.
The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)
Publisher
Relationships
The Linhardt Research Labs Online Collection
Rensselaer Polytechnic Institute, Troy, NY
https://harc.rpi.edu/
Access
https://login.libproxy.rpi.edu/login?url=https://doi.org/10.1002/aic.690441121