Cubesat dynamics and attitude control : Kane’s method, LQR, and Kalman filtering

Authors
McKee, Paul Dickson
ORCID
Loading...
Thumbnail Image
Other Contributors
Anderson, Kurt S.
Christian, John
Mishra, Sandipan
Issue Date
2018-08
Keywords
Mechanical engineering
Degree
MS
Terms of Use
This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.
Full Citation
Abstract
This goal of this thesis is to bring together several relevant techniques and methods commonly used in Spacecraft Attitude Control Engineering for the purpose of designing and simulating a complete CubeSat Attitude Control System. The CubeSat in question includes three reaction wheels and a rotate-able solar array (all modeled), totaling 7 degrees of freedom. The complete equations of motion are derived using Kane's method, creating a mathematical model that can be simulated and controlled. Process noise and sensor noise are then added to the system, and their effects are mitigated through the use of a multiplicative extended Kalman Filter (MEKF). Finally, multiple control methods are explored, with an emphasis on Linear Quadratic Regulation (LQR) for fine-pointing steady-state accuracy. The complete controller is then put to the test to see how it fares in three realistic mission phases: initial de-tumble, solar array pointing, and long-term disturbance rejection. Success is demonstrated in all three mission phases.
Description
August 2018
School of Engineering
Department
Dept. of Mechanical, Aerospace, and Nuclear Engineering
Publisher
Rensselaer Polytechnic Institute, Troy, NY
Relationships
Rensselaer Theses and Dissertations Online Collection
Access
Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.